65 research outputs found

    Modeling the quantum evolution of the universe through classical matter

    Full text link
    It is well known that the canonical quantization of the Friedmann-Lema\^itre-Robertson-Walker (FLRW) filled with a perfect fluid leads to nonsingular universes which, for later times, behave as their classical counterpart. This means that the expectation value of the scale factor (t)(t) never vanishes and, as t→∞t\to\infty, we recover the classical expression for the scale factor. In this paper, we show that such universes can be reproduced by classical cosmology given that the universe is filled with an exotic matter. In the case of a perfect fluid, we find an implicit equation of state (EoS). We then show that this single fluid with an implict EoS is equivalent to two non-interacting fluids, one of them representing stiff matter with negative energy density. In the case of two non-interacting scalar fields, one of them of the phantom type, we find their potential energy. In both cases we find that quantum mechanics changes completely the configuration of matter for small values of time, by adding a fluid or a scalar field with negative energy density. As time passes, the density of negative energy decreases and we recover the ordinary content of the classical universe. The more the initial wave function of the universe is concentrated around the classical big bang singularity, the more it is necessary to add negative energy, since this type of energy will be responsible for the removal of the classical singularity.Comment: updated version as accepted by Gen. Relativ. Gravi

    Z' signals in polarised top-antitop final states

    Full text link
    We study the sensitivity of top-antitop samples produced at all energy stages of the Large Hadron Collider (LHC) to the nature of an underlying Z' boson, in presence of full tree level standard model (SM) background effects and relative interferences. We concentrate on differential mass spectra as well as both spatial and spin asymmetries thereby demonstrating that exploiting combinations of these observables will enable one to distinguish between sequential Z's and those pertaining to Left-Right symmetric models as well as E6 inspired ones, assuming realistic final state reconstruction efficiencies and error estimates.Comment: 21 pages, 6 colour figures, 10 table

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu

    Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation.

    Get PDF
    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases

    Prospects for charged Higgs searches at the LHC

    Get PDF

    Agent based micro-simulation of a passenger rail system using customer survey data and an activity based approach

    No full text
    NoPassenger rail overcrowding is fast becoming a problem in major cities worldwide. This problem therefore calls for efficient, cheap and prompt solutions and policies, which would in turn require accurate modelling tools to effectively forecast the impact of transit demand management policies. To do this, we developed an agent-based model of a particular passenger rail system using an activity based simulation approach to predict the impact of public transport demand management pricing strategies. Our agent population was created using a customer/passenger mobility survey dataset. We modelled the temporal flexibility of passengers, based on patterns observed in the departure and arrival behavior of real travelers. Our model was validated using real life passenger count data from the passenger rail transit company, after which we evaluated the use of peak demand management instruments such as ticketing fares strategies, to influence peak demand of a passenger rail transport system. Our results suggest that agent-based simulation is effective in predicting passenger behavior for a transportation system, and can be used in predicting the impact of demand management policies

    The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective

    Get PDF
    A major aim of this review is to determine which physiological functions are adopted by adults and larvae to survive the winter season with low food supply and their relative importance. A second aim is to clarify the extent to which seasonal variation in larval and adult krill physiology is mediated by environmental factors with a strong seasonality, such as food supply or day light. Experimental studies on adult krill have demonstrated that speciWc physiological adaptations during autumn and winter, such as reduced metabolic rates and feeding activity, are not caused simply by the scarcity of food, as was previously assumed. These adaptations appear to be inXuenced by the local light regime. The physiological functions that larval krill adopt during winter (reduced metabolism, delayed development, lipid utilisation, and variable growth rates) are, in contrast to the adults, under direct control by the available food supply. During winter, the adults often seem to have little association with sea ice (at least until early spring). The larvae, however, feed within sea ice but mainly on the grazers of the ice algal community rather than on the algae themselves. In this respect, a miss-match in timing of the occurrence of the last phytoplankton blooms in autumn and the start of the sea ice formation, as has been increasingly observed in the west Antarctic Peninsula (WAP) region, will impact larval krill development during winter in terms of food supply and consequently the krill stock in this region

    Physiology of Euphausia superba

    Get PDF
    Since the 1920s, E. superba is one of the best studied species in the Southern Ocean in terms of their general biology. The main driver for this research focus has been the fisheries’ requirements for stock forecasting and conservation measures. Nowadays this is joined by concerns over climate change effects and the requirement to take a more holistic over view to understand food web structures. So far, however, we do not have a clear understanding of the physiological response of krill and hence their adaptability to cope with ongoing environmental changes, caused by the anthropogenic carbon emissions. This is due to the extreme lack of intense studies on krill physiology, especially of their larval stages in relation to their seasonal environment. A major aim of this book chapter is on the one hand to summaries how physiological functions such as lipid accumulation and utilisation, metabolic activity and growth change with ontogeny and season and to demonstrate which environmental factors are the main drivers for seasonal variability of these functions in adult and larval krill. On the other hand, we draw the attention to the importance of photoperiod (day length) as an entrainment cue for endogenous rhythms and clocks in the life cycle of krill. Furthermore, we give an overview of the current knowledge on the impact of elevated seawater temperature and ocean acidification on krill
    • 

    corecore