794 research outputs found

    Numerical Integration of the Master Equation in Some Models of Stochastic Epidemiology

    Get PDF
    The processes by which disease spreads in a population of individuals are inherently stochastic. The master equation has proven to be a useful tool for modeling such processes. Unfortunately, solving the master equation analytically is possible only in limited cases (e.g., when the model is linear), and thus numerical procedures or approximation methods must be employed. Available approximation methods, such as the system size expansion method of van Kampen, may fail to provide reliable solutions, whereas current numerical approaches can induce appreciable computational cost. In this paper, we propose a new numerical technique for solving the master equation. Our method is based on a more informative stochastic process than the population process commonly used in the literature. By exploiting the structure of the master equation governing this process, we develop a novel technique for calculating the exact solution of the master equation – up to a desired precision – in certain models of stochastic epidemiology. We demonstrate the potential of our method by solving the master equation associated with the stochastic SIR epidemic model. MATLAB software that implements the methods discussed in this paper is freely available as Supporting Information S1

    Hawking emission from quantum gravity black holes

    Get PDF
    We address the issue of modelling quantum gravity effects in the evaporation of higher dimensional black holes in order to go beyond the usual semi-classical approximation. After reviewing the existing six families of quantum gravity corrected black hole geometries, we focus our work on non-commutative geometry inspired black holes, which encode model independent characteristics, are unaffected by the quantum back reaction and have an analytical form compact enough for numerical simulations. We consider the higher dimensional, spherically symmetric case and we proceed with a complete analysis of the brane/bulk emission for scalar fields. The key feature which makes the evaporation of non-commutative black holes so peculiar is the possibility of having a maximum temperature. Contrary to what happens with classical Schwarzschild black holes, the emission is dominated by low frequency field modes on the brane. This is a distinctive and potentially testable signature which might disclose further features about the nature of quantum gravity.Comment: 36 pages, 18 figures, v2: updated reference list, minor corrections, version matching that published on JHE

    Evaluating Molecular Mechanical Potentials for Helical Peptides and Proteins

    Get PDF
    Multiple variants of the AMBER all-atom force field were quantitatively evaluated with respect to their ability to accurately characterize helix-coil equilibria in explicit solvent simulations. Using a global distributed computing network, absolute conformational convergence was achieved for large ensembles of the capped A21 and Fs helical peptides. Further assessment of these AMBER variants was conducted via simulations of a flexible 164-residue five-helix-bundle protein, apolipophorin-III, on the 100 ns timescale. Of the contemporary potentials that had not been assessed previously, the AMBER-99SB force field showed significant helix-destabilizing tendencies, with beta bridge formation occurring in helical peptides, and unfolding of apolipophorin-III occurring on the tens of nanoseconds timescale. The AMBER-03 force field, while showing adequate helical propensities for both peptides and stabilizing apolipophorin-III, (i) predicts an unexpected decrease in helicity with ALA→ARG+ substitution, (ii) lacks experimentally observed 310 helical content, and (iii) deviates strongly from average apolipophorin-III NMR structural properties. As is observed for AMBER-99SB, AMBER-03 significantly overweighs the contribution of extended and polyproline backbone configurations to the conformational equilibrium. In contrast, the AMBER-99φ force field, which was previously shown to best reproduce experimental measurements of the helix-coil transition in model helical peptides, adequately stabilizes apolipophorin-III and yields both an average gyration radius and polar solvent exposed surface area that are in excellent agreement with the NMR ensemble

    The banff 2019 kidney meeting report (I): updates on and clarification of criteria for T cell- and antibody-mediated rejection.

    Get PDF
    The XV. Banff conference for allograft pathology was held in conjunction with the annual meeting of the American Society for Histocompatibility and Immunogenetics in Pittsburgh, PA (USA) and focused on refining recent updates to the classification, advances from the Banff working groups, and standardization of molecular diagnostics. This report on kidney transplant pathology details clarifications and refinements to the criteria for chronic active (CA) T cell-mediated rejection (TCMR), borderline, and antibody-mediated rejection (ABMR). The main focus of kidney sessions was on how to address biopsies meeting criteria for CA TCMR plus borderline or acute TCMR. Recent studies on the clinical impact of borderline infiltrates were also presented to clarify whether the threshold for interstitial inflammation in diagnosis of borderline should be i0 or i1. Sessions on ABMR focused on biopsies showing microvascular inflammation in the absence of C4d staining or detectable donor-specific antibodies; the potential value of molecular diagnostics in such cases and recommendations for use of the latter in the setting of solid organ transplantation are presented in the accompanying meeting report. Finally, several speakers discussed the capabilities of artificial intelligence and the potential for use of machine learning algorithms in diagnosis and personalized therapeutics in solid organ transplantation

    Characterisation of the Fibroblast Growth Factor Dependent Transcriptome in Early Development

    Get PDF
    BACKGROUND: FGF signaling has multiple roles in regulating processes in animal development, including the specification and patterning of the mesoderm. In addition, FGF signaling supports self renewal of human embryonic stem cells and is required for differentiation of murine embryonic stem cells into a number of lineages. METHODOLOGY/PRINCIPAL FINDINGS: Given the importance of FGF signaling in regulating development and stem cell behaviour, we aimed to identify the transcriptional targets of FGF signalling during early development in the vertebrate model Xenopus laevis. We analysed the effects on gene expression in embryos in which FGF signaling was inhibited by dominant negative FGF receptors. 67 genes positively regulated by FGF signaling and 16 genes negatively regulated by FGF signaling were identified. FGF target genes are expressed in distinct waves during the late blastula to early gastrula phase. Many of these genes are expressed in the early mesoderm and dorsal ectoderm. A widespread requirement for FGF in regulating genes expressed in the Spemann organizer is revealed. The FGF targets MKP1 and DUSP5 are shown to be negative regulators of FGF signaling in early Xenopus tissues. FoxD3 and Lin28, which are involved in regulating pluripotency in ES cells are shown to be down regulated when FGF signaling is blocked. CONCLUSIONS: We have undertaken a detailed analysis of FGF target genes which has generated a robust, well validated data set. We have found a widespread role for FGF signaling in regulating the expression of genes mediating the function of the Spemann organizer. In addition, we have found that the FGF targets MKP1 and DUSP5 are likely to contribute to the complex feedback loops involved in modulating responses to FGF signaling. We also find a link between FGF signaling and the expression of known regulators of pluripotency

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    A combined computational and experimental investigation of the [2Fe–2S] cluster in biotin synthase

    Get PDF
    Biotin synthase was the first example of what is now regarded as a distinctive enzyme class within the radical S-adenosylmethionine superfamily, the members of which use Fe/S clusters as the sulphur source in radical sulphur insertion reactions. The crystal structure showed that this enzyme contains a [2Fe–2S] cluster with a highly unusual arginine ligand, besides three normal cysteine ligands. However, the crystal structure is at such a low resolution that neither the exact coordination mode nor the role of this exceptional ligand has been elucidated yet, although it has been shown that it is not essential for enzyme activity. We have used quantum refinement of the crystal structure and combined quantum mechanical and molecular mechanical calculations to explore possible coordination modes and their influences on cluster properties. The investigations show that the protonation state of the arginine ligand has little influence on cluster geometry, so even a positively charged guanidinium moiety would be in close proximity to the iron atom. Nevertheless, the crystallised enzyme most probably contains a deprotonated (neutral) arginine coordinating via the NH group. Furthermore, the Fe···Fe distance seems to be independent of the coordination mode and is in perfect agreement with distances in other structurally characterised [2Fe–2S] clusters. The exceptionally large Fe···Fe distance found in the crystal structure could not be reproduced

    Membrane Association of the PTEN Tumor Suppressor: Molecular Details of the Protein-Membrane Complex from SPR Binding Studies and Neutron Reflection

    Get PDF
    The structure and function of the PTEN phosphatase is investigated by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act pronouncedly synergistic in pulling the enzyme to the membrane surface. The equilibrium dissociation constants for the binding of wild type (wt) PTEN to PS and PI(4,5)P2 were determined to be Kd∼12 µM and 0.4 µM, respectively, and Kd∼50 nM if both lipids are present. Membrane affinities depend critically on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. The PTEN mutations C124S and H93R show binding affinities that deviate strongly from those measured for the wt protein. Both mutants bind PS more strongly than wt PTEN. While C124S PTEN has at least the same affinity to PI(4,5)P2 and an increased apparent affinity to PI(3,4,5)P3, due to its lack of catalytic activity, H93R PTEN shows a decreased affinity to PI(4,5)P2 and no synergy in its binding with PS and PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase “scoots" along the membrane surface (penetration <5 Å) but binds the membrane tightly with its two major domains, the C2 and phosphatase domains, as suggested by the crystal structure. The regulatory C-terminal tail is most likely displaced from the membrane and organized on the far side of the protein, ∼60 Å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN

    Gene-enhanced tissue engineering for dental hard tissue regeneration: (1) overview and practical considerations

    Get PDF
    Gene-based therapies for tissue regeneration involve delivering a specific gene to a target tissue with the goal of changing the phenotype or protein expression profile of the recipient cell; the ultimate goal being to form specific tissues required for regeneration. One of the principal advantages of this approach is that it provides for a sustained delivery of physiologic levels of the growth factor of interest. This manuscript will review the principals of gene-enhanced tissue engineering and the techniques of introducing DNA into cells. Part 2 will review recent advances in gene-based therapies for dental hard tissue regeneration, specifically as it pertains to dentin regeneration/pulp capping and periodontal regeneration

    Association of the Chromosome Replication Initiator DnaA with the Escherichia coli Inner Membrane In Vivo: Quantity and Mode of Binding

    Get PDF
    DnaA initiates chromosome replication in most known bacteria and its activity is controlled so that this event occurs only once every cell division cycle. ATP in the active ATP-DnaA is hydrolyzed after initiation and the resulting ADP is replaced with ATP on the verge of the next initiation. Two putative recycling mechanisms depend on the binding of DnaA either to the membrane or to specific chromosomal sites, promoting nucleotide dissociation. While there is no doubt that DnaA interacts with artificial membranes in vitro, it is still controversial as to whether it binds the cytoplasmic membrane in vivo. In this work we looked for DnaA-membrane interaction in E. coli cells by employing cell fractionation with both native and fluorescent DnaA hybrids. We show that about 10% of cellular DnaA is reproducibly membrane-associated. This small fraction might be physiologically significant and represent the free DnaA available for initiation, rather than the vast majority bound to the datA reservoir. Using the combination of mCherry with a variety of DnaA fragments, we demonstrate that the membrane binding function is delocalized on the surface of the protein’s domain III, rather than confined to a particular sequence. We propose a new binding-bending mechanism to explain the membrane-induced nucleotide release from DnaA. This mechanism would be fundamental to the initiation of replication
    corecore