32 research outputs found

    Demystifying the coronal line region of active galactic nuclei: spatially resolved spectroscopy with HST

    Full text link
    We present an analysis of STIS/HST optical spectra of a sample of ten Seyfert galaxies aimed at studying the structure and physical properties of the coronal-line region (CLR). The high-spatial resolution provided by STIS allowed us to resolve the CLR and obtain key information about the kinematics of the coronal-line gas, measure directly its spatial scale, and study the mechanisms that drive the high-ionisation lines. We find CLRs extending from just a few parsecs (~10 pc) up to 230 pc in radius, consistent with the bulk of the coronal lines (CLs) originating between the BLR and NLR, and extending into the NLR in the case of [FeVII] and [NeV] lines. The CL profiles strongly vary with the distance to the nucleus. We observed line splitting in the core of some of the galaxies. Line peak shifts, both red- and blue-shifts, typically reached 500 km/s, and even higher velocities (1000 km/s) in some of the galaxies. In general, CLs follow the same pattern of rotation curves as low-ionisation lines like [OIII]. From a direct comparison between the radio and the CL emission we find that neither the strength nor the kinematics of the CLs scale in any obvious and strong way with the radio jets. Moreover, the similarity of the flux distributions and kinematics of the CLs and low-ionisation lines, the low temperatures derived for the gas, and the success of photoionisation models to reproduce, within a factor of few, the observed line ratios, point towards photoionisation as the main driving mechanism of CLs.Comment: Accepted for publication in MNRAS. 27 pages, 21 figures, 4 table

    Wheels of Fire IV. Star Formation and the Neutral Interstellar Medium in the Ring Galaxy AM0644-741

    Full text link
    We combine data from the ATNF and the SEST to investigate the neutral ISM in AM0644-741, a large and robustly star-forming ring galaxy. The galaxy's ISM is concentrated in the 42-kpc diameter starburst ring, but appears dominated by atomic gas, with a global molecular fraction (f_mol) of only 7.9%. Apart from the starburst peak, the gas ring is stable against the growth of gravitational instabilities (Q_gas=2-7). Including stars lowers Q overall, but not enough to make Q<1 everywhere. The ring's global star formation efficiency (SFE) appears somewhat elevated, but varies around the ring by more than an order of magnitude, peaking where star formation is most intense. AM0644-741's star formation law is peculiar: HI follows a Schmidt law while H2 is uncorrelated with SFR/area. Photodissociation models yield low volume densities in the ring, particularly in the starburst quadrant (n~2 cm^-3), implying a warm neutral medium dominated ISM. At the same time, the ring's pressure and ambient far-ultraviolet radiation field lead to the expectation of a predominantly molecular ISM. We argue that the ring's peculiar star formation law, n, SFE, and f_mol result from the ISM's >100 Myr confinement time in the starburst ring, which enhances the destructive effects of embedded massive stars and supernovae. As a result, the ring's molecular ISM becomes dominated by small clouds where star formation is most intense, causing H2 to be underestimated by 12CO line fluxes: in effect X(CO) >> X(Gal) despite the ring's solar metallicity. The observed large HI component is primarily a low density photodissociation product, i.e., a tracer rather than a precursor of massive star formation. Such an "over-cooked" ISM may be a general characteristic of evolved starburst ring galaxies.Comment: 41 pages, 7 tables, 18 eps figure

    Meta-omics approaches to understand and improve wastewater treatment systems

    Get PDF
    Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel high-throughput molecular methods (metagenomics, metatranscriptomics, metaproteomics, metabolomics) are providing detailed knowledge on the microorganisms governing wastewater treatment systems and on their metabolic capabilities. The genomes of uncultured microbes with key roles in wastewater treatment plants (WWTP), such as the polyphosphate-accumulating microorganism Candidatus Accumulibacter phosphatis, the nitrite oxidizer Candidatus Nitrospira defluvii or the anammox bacterium Candidatus Kuenenia stuttgartiensis are now available through metagenomic studies. Metagenomics allows to genetically characterize full-scale WWTP and provides information on the lifestyles and physiology of key microorganisms for wastewater treatment. Integrating metagenomic data of microorganisms with metatranscriptomic, metaproteomic and metabolomic information provides a better understanding of the microbial responses to perturbations or environmental variations. Data integration may allow the creation of predictive behavior models of wastewater ecosystems, which could help in an improved exploitation of microbial processes. This review discusses the impact of meta-omic approaches on the understanding of wastewater treatment processes, and the implications of these methods for the optimization and design of wastewater treatment bioreactors.Research was supported by the Spanish Ministry of Education and Science (Contract Project CTQ2007-64324 and CONSOLIDER-CSD 2007-00055) and the Regional Government of Castilla y Leon (Ref. VA038A07). Research of AJMS is supported by the European Research Council (Grant 323009

    The transcriptional landscape of age in human peripheral blood

    Get PDF
    Disease incidences increase with age, but the molecular characteristics of ageing that lead to increased disease susceptibility remain inadequately understood. Here we perform a whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry (including replication) and identify 1,497 genes that are differentially expressed with chronological age. The age-associated genes do not harbor more age-associated CpG-methylation sites than other genes, but are instead enriched for the presence of potentially functional CpG-methylation sites in enhancer and insulator regions that associate with both chronological age and gene expression levels. We further used the gene expression profiles to calculate the 'transcriptomic age' of an individual, and show that differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index. The transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models, and can be used by others to calculate transcriptomic age in external cohorts.Peer reviewe
    corecore