413 research outputs found

    Seasonal Variability of the Observed Barrier Layer in the Arabian Sea

    Get PDF
    The formation mechanisms of the barrier layer ( BL) and its seasonal variability in the Arabian Sea ( AS) are studied using a comprehensive dataset of temperature and salinity profiles from Argo and other archives for the AS. Relatively thick BL of 20-60 m with large spatial extent is found in the central-southwestern AS ( CSWAS), the convergence zone of the monsoon wind, during the peak summer monsoon ( July-August) and in the southeastern AS ( SEAS) and northeastern AS ( NEAS) during the winter ( January-February). Although the BL in the SEAS has been reported before, the observed thick BL in the central-southwestern AS during the peak summer monsoon and in the northeastern AS during late winter are the new findings of this study. The seasonal variability of BL thickness ( BLT) is closely related to the processes that occur during summer and winter monsoons. During both seasons, the Ekman processes and the distribution of low-salinity waters in the surface layer show a dominant influence on the observed BLT distributions. In addition, Kelvin and Rossby waves also modulate the observed BL thickness in the AS. The relatively low salinity surface water overlying the Arabian Sea high-salinity water ( ASHSW) provides an ideal ground for strong haline stratification in the CSWAS ( during summer monsoon) and in NEAS ( during winter monsoon). During summer, northward advection of equatorial low-salinity water by the Somali Current and the offshore advection of low-salinity water from the upwelling region facilitate the salinity stratification that is necessary to develop the observed BL in the CSWAS. In the SEAS, during winter, the winter monsoon current ( WMC) carries less saline water over relatively high salinity ambient water to form the observed BL there. The winter West India Coastal Current ( WICC) transports the low-salinity water from the SEAS to the NEAS, where it lies over the subducted ASHSW leading to strong haline stratification. Ekman pumping together with the downwelling Kelvin wave in the NEAS deepen the thermocline to cause the observed thick BL in the NEAS

    Dynamical model and nonextensive statistical mechanics of a market index on large time windows

    Full text link
    The shape and tails of partial distribution functions (PDF) for a financial signal, i.e. the S&P500 and the turbulent nature of the markets are linked through a model encompassing Tsallis nonextensive statistics and leading to evolution equations of the Langevin and Fokker-Planck type. A model originally proposed to describe the intermittent behavior of turbulent flows describes the behavior of normalized log-returns for such a financial market index, for small and large time windows, both for small and large log-returns. These turbulent market volatility (of normalized log-returns) distributions can be sufficiently well fitted with a χ2\chi^2-distribution. The transition between the small time scale model of nonextensive, intermittent process and the large scale Gaussian extensive homogeneous fluctuation picture is found to be at ca.ca. a 200 day time lag. The intermittency exponent (κ\kappa) in the framework of the Kolmogorov log-normal model is found to be related to the scaling exponent of the PDF moments, -thereby giving weight to the model. The large value of κ\kappa points to a large number of cascades in the turbulent process. The first Kramers-Moyal coefficient in the Fokker-Planck equation is almost equal to zero, indicating ''no restoring force''. A comparison is made between normalized log-returns and mere price increments.Comment: 40 pages, 14 figures; accepted for publication in Phys Rev

    Scalable and sustainable manufacturing of ultrathin metal–organic framework nanosheets (MONs) for solar cell applications

    Get PDF
    Metal-organic framework nanosheets (MONs) are an emerging class of 2D materials whose tunable chemistry make them ideal for a wide range of sensing, catalytic, electronics and separation applications. However, creating scalable routes to the synthesis of high quality, ultrathin nanosheets remains challenging and little consideration has been given to the economics of making these materials. Here, we demonstrate a scalable synthesis of zinc-porphyrin based nanosheets, Zn2(H2TCPP), for use in organic solar cells and conduct a techno-economic analysis of their pilot-plant scale manufacture. A thorough investigation of the process chemistry of the solvothermal synthesis enabled reduction of reaction time, increased solid content and scale-up of the reaction in batch. Significantly, the addition of triethylamine accelerated the reaction kinetics, which enabled the synthesis temperature to be dropped from > 80 °C to room temperature. Application of these new reaction conditions in a continuous stirred-tank reactor directly formed monolayer MONs at 99 % yield with a space–time yield of 16 kg m−3 day−1, an approximately 20-fold increase in yield compared to adapting the literature procedure. Techno-economic analysis showed a 94 % reduction in the production costs compared to the literature reaction conditions and indicated that the production cost was dominated by ligand price. The general applicability of the method was demonstrated through synthesis of related Cu2(H2TCPP) MONs and tunability through metalation of the porphyrin units with six different metal ions. Finally, the value of the nanosheets was demonstrated through a near doubling in the power conversion efficiency of organic photovoltaic devices when the MONs were incorporated into the active layer. Overall, this work demonstrates the first scalable and sustainable route to producing monolayer nanosheets for high value applications

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary

    Get PDF
    This paper constructs the reduction of heterotic MM-theory in eleven dimensions to a supergravity model on a manifold with boundary in five dimensions using a Calabi-Yau three-fold. New results are presented for the boundary terms in the action and for the boundary conditions on the bulk fields. Some general features of dualisation on a manifold with boundary are used to explain the origin of some topological terms in the action. The effect of gaugino condensation on the fermion boundary conditions leads to a `twist' in the chirality of the gravitino which can provide an uplifting mechanism in the vacuum energy to cancel the cosmological constant after moduli stabilisation.Comment: 16 pages, RevTe

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    corecore