78 research outputs found

    Population differentiation and historical demography of the threatened snowy plover Charadrius nivosus (Cassin, 1858)

    Get PDF
    Delineating conservation units is a complex and often controversial process that is particularly challenging for highly vagile species. Here, we reassess population genetic structure and identify those populations of highest conservation value in the threatened snowy plover (Charadrius nivosus, Cassin, 1858), a partial migrant shorebird endemic to the Americas. We use four categories of genetic data—mitochondrial DNA (mtDNA), microsatellites, Z-linked and autosomal single nucleotide polymorphisms (SNPs)—to: (1) assess subspecies delineation and examine population structure (2) compare the sensitivity of the different types of genetic data to detect spatial genetic patterns, and (3) reconstruct demographic history of the populations analysed. Delineation of two traditionally recognised subspecies was broadly supported by all data. In addition, microsatellite and SNPs but not mtDNA supported the recognition of Caribbean snowy plovers (C. n. tenuirostris) and Floridian populations (eastern C. n. nivosus) as distinct genetic lineage and deme, respectively. Low migration rates estimated from autosomal SNPs (m < 0.03) reflect a general paucity of exchange between genetic lineages. In contrast, we detected strong unidirectional migration (m = 0.26) from the western into the eastern nivosus deme. Within western nivosus, we found no genetic differentiation between coastal Pacific and inland populations. The correlation between geographic and genetic distances was weak but significant for all genetic data sets. All demes showed signatures of bottlenecks occurring during the past 1000 years. We conclude that at least four snowy plover conservation units are warranted: in addition to subspecies nivosus and occidentalis, a third unit comprises the Caribbean tenuirostris lineage and a fourth unit the distinct eastern nivosus deme

    Outer-disk reddening and gas-phase metallicities: The CALIFA connection

    Full text link
    Astronomy and Astrophysics 585 (2016): A47 reproduced with permission from Astronomy & AstrophysicsWe study, for the first time in a statistically significant and well-defined sample, the relation between the outer-disk ionized-gas metallicity gradients and the presence of breaks in the surface brightness profiles of disk galaxies. Sloan Digital Sky Survey (SDSS) g′- and r′-band surface brightness, (g′ - r′) color, and ionized-gas oxygen abundance profiles for 324 galaxies within the Calar Alto Legacy Integral Field Area (CALIFA) survey are used for this purpose. We perform a detailed light-profile classification, finding that 84% of our disks show down- or up-bending profiles (Type II and Type III, respectively), while the remaining 16% are well fitted by one single exponential (Type I). The analysis of the color gradients at both sides of this break shows a U-shaped profile for most Type II galaxies with an average minimum (g′ - r′) color of ∼ 0.5mag and an ionized-gas metallicity flattening associated with it only in the case of low-mass galaxies. Comparatively, more massive systems show a rather uniform negative metallicity gradient. The correlation between metallicity flattening and stellar mass for these systems results in p-values as low as 0.01. Independent of the mechanism having shaped the outer light profiles of these galaxies, stellar migration or a previous episode of star formation in a shrinking star-forming disk, it is clear that the imprint in their ionized-gas metallicity was different for low- and high-mass Type II galaxies. In the case of Type III disks, a positive correlation between the change in color and abundance gradient is found (the null hypothesis is ruled out with a p-value of 0.02), with the outer disks of Type III galaxies with masses ≤1010 M′ showing a weak color reddening or even a bluing. This is interpreted as primarily due to a mass downsizing effect on the population of Type III galaxies that recently experienced an enhanced inside-out growthWe acknowledge support from the Plan Nacional de Investigación y Desarrollo funding programs, AyA2010-15081, AyA2012-30717 and AyA2013-46724P, of Spanish Ministerio de Economía y Competitividad (MINECO). A.G.d.P. acknowledges the support from the FP7 Marie Curie Actions of the European Commission, via the Initial Training Network DAGAL under REA grant agreement PITNGA- 2011-289313. C.C.-T. thanks the support of the Spanish Ministerio de Educación, Cultura y Deporte by means of the FPU fellowship program. C.J.W. acknowledges support through the Marie Curie Career Integration Grant 303912. Support for L.G. is provided by the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC 120009, awarded to The Millennium Institute of Astrophysics, MAS. L.G. acknowledges support by CONIC YT through FONDECYT grant 3140566. S.F.S. thanks the CONACYT-125180 and DGAPA-IA100815 projects for providing him support in this study. J.M.A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild). P.P. is supported by FCT through the Investigador FCT Contract No. IF/01220/2013 and POPH/FSE (EC) by FEDER funding through the program COMPETE. He also acknowledges support by FCT under project FCOMP-01-0124-FEDER-029170 (Reference FCT PTDC/FISAST/ 3214/2012), funded by FCT-MEC (PIDDAC) and FEDER (COMPETE

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Study protocol for the multicentre cohorts of Zika virus infection in pregnant women, infants, and acute clinical cases in Latin America and the Caribbean: The ZIKAlliance consortium

    Get PDF
    Background: The European Commission (EC) Horizon 2020 (H2020)-funded ZIKAlliance Consortium designed a multicentre study including pregnant women (PW), children (CH) and natural history (NH) cohorts. Clinical sites were selected over a wide geographic range within Latin America and the Caribbean, taking into account the dynamic course of the ZIKV epidemic. Methods: Recruitment to the PW cohort will take place in antenatal care clinics. PW will be enrolled regardless of symptoms and followed over the course of pregnancy, approximately every 4 weeks. PW will be revisited at delivery (or after miscarriage/abortion) to assess birth outcomes, including microcephaly and other congenital abnormalities according to the evolving definition of congenital Zika syndrome (CZS). After birth, children will be followed for 2 years in the CH cohort. Follow-up visits are scheduled at ages 1-3, 4-6, 12, and 24 months to assess neurocognitive and developmental milestones. In addition, a NH cohort for the characterization of symptomatic rash/fever illness was designed, including follow-up to capture persisting health problems. Blood, urine, and other biological materials will be collected, and tested for ZIKV and other relevant arboviral diseases (dengue, chikungunya, yellow fever) using RT-PCR or serological methods. A virtual, decentralized biobank will be created. Reciprocal clinical monitoring has been established between partner sites. Substudies of ZIKV seroprevalence, transmissio

    Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory

    Get PDF
    From direct observations of the longitudinal development of ultra-high energy air showers performed with the Pierre Auger Observatory, upper limits of 3.8%, 2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray photons above 2, 3, 5 and 10 EeV (1 EeV = 10^18 eV) respectively. These are the first experimental limits on ultra-high energy photons at energies below 10 EeV. The results complement previous constraints on top-down models from array data and they reduce systematic uncertainties in the interpretation of shower data in terms of primary flux, nuclear composition and proton-air cross-section.Comment: 20 pages, 7 figures, 2 tables. Minor changes. Accepted by Astroparticle Physic
    corecore