342 research outputs found

    Private information via the Unruh effect

    Full text link
    In a relativistic theory of quantum information, the possible presence of horizons is a complicating feature placing restrictions on the transmission and retrieval of information. We consider two inertial participants communicating via a noiseless qubit channel in the presence of a uniformly accelerated eavesdropper. Owing to the Unruh effect, the eavesdropper's view of any encoded information is noisy, a feature the two inertial participants can exploit to achieve perfectly secure quantum communication. We show that the associated private quantum capacity is equal to the entanglement-assisted quantum capacity for the channel to the eavesdropper's environment, which we evaluate for all accelerations.Comment: 5 pages. v2: footnote deleted and typos corrected. v3: major revision. New capacity (single-letter!) theorem and implicit assumption lifte

    Hastings' additivity counterexample via Dvoretzky's theorem

    Full text link
    The goal of this note is to show that Hastings' counterexample to the additivity of minimal output von Neumann entropy can be readily deduced from a sharp version of Dvoretzky's theorem on almost spherical sections of convex bodies.Comment: 12 pages; v.2: added references, Appendix A expanded to make the paper essentially self-containe

    Rat cerebral cortical synaptoneurosomal membranes. Structure and interactions with imidazobenzodiazepine and 1,4-dihydropyridine calcium channel drugs

    Get PDF
    Small angle x-ray scattering has been used to investigate the structure of synaptoneurosomal (SNM) membranes from rat cerebral cortex. Electron micrographs of the preparation showed SNM with classical synaptic appositions intact, other vesicles, occasional mitochondria, and some myelin. An immunoassay for myelin basic protein placed the myelin content of normal rat SNM at less than 2% by weight of the total membrane present. X-Ray diffraction patterns showed five diffraction orders with a unit cell repeat for the membrane of 71 to 78 A at higher hydration states. At lower hydration, 11 orders appeared; the unit cell repeat was 130 A, indicating that the unit cell contained two membranes. Electron density profiles for the 130-A unit cell were determined; they clearly showed the two opposed asymmetrical membranes of the SNM vesicles. SNM membrane/buffer partition coefficients (Kp) of imidazobenzodiazepine and 1,4-dihydropyridine (DHP) calcium channel drugs were measured; Kp's for DHP drugs were approximately five times higher in rabbit light sarcoplasmic reticulum than in SNM. Ro 15–1788 and the DHP BAY K 8644 bind primarily to the outer monolayer of vesicles of intact SNM membranes. Nonspecific equilibrium binding of Ro 15–1788 occurs mainly in the upper acyl chain of the bilayer in lipid extracts of SNM membrane

    Quantum Communication in Rindler Spacetime

    Full text link
    A state that an inertial observer in Minkowski space perceives to be the vacuum will appear to an accelerating observer to be a thermal bath of radiation. We study the impact of this Davies-Fulling-Unruh noise on communication, particularly quantum communication from an inertial sender to an accelerating observer and private communication between two inertial observers in the presence of an accelerating eavesdropper. In both cases, we establish compact, tractable formulas for the associated communication capacities assuming encodings that allow a single excitation in one of a fixed number of modes per use of the communications channel. Our contributions include a rigorous presentation of the general theory of the private quantum capacity as well as a detailed analysis of the structure of these channels, including their group-theoretic properties and a proof that they are conjugate degradable. Connections between the Unruh channel and optical amplifiers are also discussed.Comment: v3: 44 pages, accepted in Communications in Mathematical Physic

    Magnetic Order in YBa2_2Cu3_3O6+x_{6+x} Superconductors

    Get PDF
    Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa2_2Cu3_3O6+x_{6+x} superconductors. Most of the measurements were made on a high quality crystal of YBa2_2Cu3_3O6.6_{6.6}. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the aa-bb plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the dd-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa2_2Cu3_3O7_{7} show no signal while a small magnetic intensity is found in YBa2_2Cu3_3O6.45_{6.45} that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.Comment: 11 pages with 10 figure

    Predicting evolution and visualizing high-dimensional fitness landscapes

    Full text link
    The tempo and mode of an adaptive process is strongly determined by the structure of the fitness landscape that underlies it. In order to be able to predict evolutionary outcomes (even on the short term), we must know more about the nature of realistic fitness landscapes than we do today. For example, in order to know whether evolution is predominantly taking paths that move upwards in fitness and along neutral ridges, or else entails a significant number of valley crossings, we need to be able to visualize these landscapes: we must determine whether there are peaks in the landscape, where these peaks are located with respect to one another, and whether evolutionary paths can connect them. This is a difficult task because genetic fitness landscapes (as opposed to those based on traits) are high-dimensional, and tools for visualizing such landscapes are lacking. In this contribution, we focus on the predictability of evolution on rugged genetic fitness landscapes, and determine that peaks in such landscapes are highly clustered: high peaks are predominantly close to other high peaks. As a consequence, the valleys separating such peaks are shallow and narrow, such that evolutionary trajectories towards the highest peak in the landscape can be achieved via a series of valley crossingsComment: 12 pages, 7 figures. To appear in "Recent Advances in the Theory and Application of Fitness Landscapes" (A. Engelbrecht and H. Richter, eds.). Springer Series in Emergence, Complexity, and Computation, 201

    A quantum Monte Carlo study of the one-dimensional ionic Hubbard model

    Full text link
    Quantum Monte Carlo methods are used to study a quantum phase transition in a 1D Hubbard model with a staggered ionic potential (D). Using recently formulated methods, the electronic polarization and localization are determined directly from the correlated ground state wavefunction and compared to results of previous work using exact diagonalization and Hartree-Fock. We find that the model undergoes a thermodynamic transition from a band insulator (BI) to a broken-symmetry bond ordered (BO) phase as the ratio of U/D is increased. Since it is known that at D = 0 the usual Hubbard model is a Mott insulator (MI) with no long-range order, we have searched for a second transition to this state by (i) increasing U at fixed ionic potential (D) and (ii) decreasing D at fixed U. We find no transition from the BO to MI state, and we propose that the MI state in 1D is unstable to bond ordering under the addition of any finite ionic potential. In real 1D systems the symmetric MI phase is never stable and the transition is from a symmetric BI phase to a dimerized BO phase, with a metallic point at the transition

    Spin Susceptibility in Underdoped YBa2Cu3O6+x\bf YBa_2Cu_3O_{6+x}

    Full text link
    We report a comprehensive polarized and unpolarized neutron scattering study of the evolution of the dynamical spin susceptibility with temperature and doping in three underdoped single crystals of the \YBCO{6+x} high temperature superconductor: \YBCO{6.5} (Tc = 52 K), \YBCO{6.7} (Tc = 67 K), and \YBCO{6.85} (T_c = 87 K). Theoretical implications of these data are discussed, and a critique of recent attempts to relate the spin excitations to the thermodynamics of high temperature superconductors is given.Comment: minor revisions, to appear in PR

    Susceptibility amplitude ratio for generic competing systems

    Full text link
    We calculate the susceptibility amplitude ratio near a generic higher character Lifshitz point up to one-loop order. We employ a renormalization group treatment with LL independent scaling transformations associated to the various inequivalent subspaces in the anisotropic case in order to compute the ratio above and below the critical temperature and demonstrate its universality. Furthermore, the isotropic results with only one type of competition axes have also been shown to be universal. We describe how the simpler situations of mm-axial Lifshitz points as well as ordinary (noncompeting) systems can be retrieved from the present framework.Comment: 20 pages, no figure

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore