The tempo and mode of an adaptive process is strongly determined by the
structure of the fitness landscape that underlies it. In order to be able to
predict evolutionary outcomes (even on the short term), we must know more about
the nature of realistic fitness landscapes than we do today. For example, in
order to know whether evolution is predominantly taking paths that move upwards
in fitness and along neutral ridges, or else entails a significant number of
valley crossings, we need to be able to visualize these landscapes: we must
determine whether there are peaks in the landscape, where these peaks are
located with respect to one another, and whether evolutionary paths can connect
them. This is a difficult task because genetic fitness landscapes (as opposed
to those based on traits) are high-dimensional, and tools for visualizing such
landscapes are lacking. In this contribution, we focus on the predictability of
evolution on rugged genetic fitness landscapes, and determine that peaks in
such landscapes are highly clustered: high peaks are predominantly close to
other high peaks. As a consequence, the valleys separating such peaks are
shallow and narrow, such that evolutionary trajectories towards the highest
peak in the landscape can be achieved via a series of valley crossingsComment: 12 pages, 7 figures. To appear in "Recent Advances in the Theory and
Application of Fitness Landscapes" (A. Engelbrecht and H. Richter, eds.).
Springer Series in Emergence, Complexity, and Computation, 201