2,255 research outputs found

    Measurements of local chemistry and structure in Ni(O)-YSZ composites during reduction using energy-filtered environmental TEM

    Get PDF
    Energy-filtered transmission electron microscopy images are acquired during the reduction of a NiO–YSZ composite in H2 up to 600 °C. Temperature-resolved quantitative information about both chemistry and structure is extracted with nm spatial resolution from the data, paving the way for the development of detailed reduction models

    In Situ Reduction and Oxidation of Nickel from Solid Oxide Fuel Cells in a Titan ETEM

    Get PDF
    Environmental transmission electron microscopy was used to characterize in situ the reduction and oxidation of nickel from a Ni/YSZ solid oxide fuel cell anode support between 300-500°C. The reduction is done under low hydrogen pressure. The reduction initiates at the NiO/YSZ interface, then moves to the center of the NiO grain. At higher temperature the reduction occurs also at the free NiO surface and the NiO/NiO grain boundaries. The growth of Ni is epitaxial on its oxide. Due to high volume decrease, nanopores are formed during reduction. During oxidation, oxide nanocrystallites are formed on the nickel surface. The crystallites fill up the nickel porosity and create an inhomogeneous structure with remaining voids. This change in structure causes the nickel oxide to expand during a RedOx cycle

    In situ Reduction and Oxidation of Nickel from Solid Oxide Fuel Cells in a Transmission Electron Microscope

    Get PDF
    Environmental transmission electron microscopy was used to characterize in situ the reduction and oxidation of nickel from a Ni/YSZ solid oxide fuel cell anode support between 300-500°C. The reduction is done under low hydrogen pressure. The reduction initiates at the NiO/YSZ interface, then moves to the center of the NiO grain. At higher temperature the reduction occurs also at the free NiO surface and the NiO/NiO grain boundaries. The growth of Ni is epitaxial on its oxide. Due to high volume decrease, nanopores are formed during reduction. During oxidation, oxide nanocrystallites are formed on the nickel surface. The crystallites fill up the nickel porosity and create an inhomogeneous structure with remaining voids. This change in structure causes the nickel oxide to expand during a RedOx cycle

    The rhesus protein RhCG: a new perspective in ammonium transport and distal urinary acidification

    Get PDF
    Urinary acidification is a complex process requiring the coordinated action of enzymes and transport proteins and resulting in the removal of acid and the regeneration of bicarbonate. Proton secretion is mediated by luminal H(+)-ATPases and requires the parallel movement of NH(3), and its protonation to NH(4)(+), to provide sufficient buffering. It has been long assumed that ammonia secretion is a passive process occurring by means of simple diffusion driven by the urinary trapping of ammonium. However, new data indicate that mammalian cells possess specific membrane proteins from the family of rhesus proteins involved in ammonia/ÎĽm permeability. Rhesus proteins were first identified in yeast and later also in plants, algae, and mammals. In rodents, RhBG and RhCG are expressed in the collecting duct, whereas in humans only RhCG was detected. Their expression increases with maturation of the kidney and accelerates after birth in parallel with other acid-base transport proteins. Deletion of RhBG in mice had no effect on renal ammonium excretion, whereas RhCG deficiency reduces renal ammonium secretion strongly, causes metabolic acidosis in acid-challenged mice, and impairs restoration of normal acid-base status. Microperfusion experiments or functional reconstitution in liposomes demonstrates that ammonia is the most likely substrate of RhCG. Similarly, crystal structures of human RhCG and the homologous bacterial AmtB protein suggest that these proteins may form gas channels.Kidney International advance online publication, 6 October 2010; doi:10.1038/ki.2010.386

    Stepwise Conformational Stabilization of a HIV-1 Clade C Consensus Envelope Trimer Immunogen Impacts the Profile of Vaccine-Induced Antibody Responses.

    Get PDF
    Stabilization of the HIV-1 Envelope glycoprotein trimer (Env) in its native pre-fusion closed conformation is regarded as one of several requirements for the induction of neutralizing antibody (nAb) responses, which, in turn, will most likely be a prerequisite for the development of an efficacious preventive vaccine. Here, we systematically analyzed how the stepwise stabilization of a clade C consensus (ConC) Env immunogen impacts biochemical and biophysical protein traits such as antigenicity, thermal stability, structural integrity, and particle size distribution. The increasing degree of conformational rigidification positively correlates with favorable protein characteristics, leading to optimized homogeneity of the protein preparations, increased thermal stability, and an overall favorable binding profile of structure-dependent broadly neutralizing antibodies (bnAbs) and non-neutralizing antibodies (non-nAbs). We confirmed that increasing the structural integrity and stability of the Env trimers positively correlates with the quality of induced antibody responses by the immunogens. These and other data contribute to the selection of ConCv5 KIKO as novel Env immunogens for use within the European Union's H2020 Research Consortium EHVA (European HIV Alliance) for further preclinical analysis and phase 1 clinical development

    Microscopic model approaches to fragmentation of nuclei and phase transitions in nuclear matter

    Get PDF
    The properties of excited nuclear matter and the quest for a phase transition which is expected to exist in this system are the subject of intensive investigations. High energy nuclear collisions between finite nuclei which lead to matter fragmentation are used to investigate these properties. The present report covers effective work done on the subject over the two last decades. The analysis of experimental data is confronted with two major problems, the setting up of thermodynamic equilibrium in a time-dependent fragmentation process and the finite size of nuclei. The present status concerning the first point is presented. Simple classical models of disordered systems are derived starting with the generic bond percolation approach. These lattice and cellular equilibrium models, like percolation approaches, describe successfully experimental fragment multiplicity distributions. They also show the properties of systems which undergo a thermodynamic phase transition. Physical observables which are devised to show the existence and to fix the order of critical behaviour are presented. Applications to the models are shown. Thermodynamic properties of finite systems undergoing critical behaviour are advantageously described in the framework of the microcanonical ensemble. Applications to the designed models and to experimental data are presented and analysed. Perspectives of further developments of the field are suggested.Comment: 150 pages including 28 figures. To be published in Phys. Rep. Corrected discussion in section 3.2.3 and new Fig.5. New caption of Fig.2

    Advanced nanostructured medical device combining mesenchymal cells and VEGF nanoparticles for enhanced engineered tissue vascularization.

    Get PDF
    AIM: Success of functional vascularized tissue repair depends on vascular support system supply and still remains challenging. Our objective was to develop a nanoactive implant enhancing endothelial cell activity, particularly for bone tissue engineering in the regenerative medicine field. MATERIALS & METHODS: We developed a new strategy of tridimensional implant based on cell-dependent sustained release of VEGF nanoparticles. These nanoparticles were homogeneously distributed within nanoreservoirs onto the porous scaffold, with quicker reorganization of endothelial cells. Moreover, the activity of this active smart implant on cells was also modulated by addition of osteoblastic cells. RESULTS & CONCLUSION: This sophisticated active strategy should potentiate efficiency of current therapeutic implants for bone repair, avoiding the need for bone substitutes

    Proliferation of Acid-Secretory Cells in the Kidney during Adaptive Remodelling of the Collecting Duct

    Get PDF
    The renal collecting duct adapts to changes in acid-base metabolism by remodelling and altering the relative number of acid or alkali secreting cells, a phenomenon termed plasticity. Acid secretory A intercalated cells (A-IC) express apical H+-ATPases and basolateral bicarbonate exchanger AE1 whereas bicarbonate secretory B intercalated cells (B-IC) express basolateral (and apical) H+-ATPases and the apical bicarbonate exchanger pendrin. Intercalated cells were thought to be terminally differentiated and unable to proliferate. However, a recent report in mouse kidney suggested that intercalated cells may proliferate and that this process is in part dependent on GDF-15. Here we extend these observations to rat kidney and provide a detailed analysis of regional differences and demonstrate that differentiated A-IC proliferate massively during adaptation to systemic acidosis. We used markers of proliferation (PCNA, Ki67, BrdU incorporation) and cell-specific markers for A-IC (AE1) and B-IC (pendrin). Induction of remodelling in rats with metabolic acidosis (with NH4Cl for 12 hrs, 4 and 7 days) or treatment with acetazolamide for 10 days resulted in a larger fraction of AE1 positive cells in the cortical collecting duct. A large number of AE1 expressing A-IC was labelled with proliferative markers in the cortical and outer medullary collecting duct whereas no labeling was found in B-IC. In addition, chronic acidosis also increased the rate of proliferation of principal collecting duct cells. The fact that both NH4Cl as well as acetazolamide stimulated proliferation suggests that systemic but not urinary pH triggers this response. Thus, during chronic acidosis proliferation of AE1 containing acid-secretory cells occurs and may contribute to the remodelling of the collecting duct or replace A-IC due to a shortened life span under these conditions
    • …
    corecore