Technical University of Denmark ## In Situ TEM Study of Reduction and Reoxidation of NiO and NiO-YSZ Composites Van herle, Jan; Jeangros, Quentin; Wagner, Jakob Birkedal; Hansen, Thomas Willum; Hessler-Wyser, Aïcha Published in: E C S Transactions Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Van herle, J., Jeangros, Q., Wagner, J. B., Hansen, T. W., & Hessler-Wyser, A. (2016). In Situ TEM Study of Reduction and Reoxidation of NiO and NiO-YSZ Composites. E C S Transactions, MA2016-01, [1502]. ## DTU Library Technical Information Center of Denmark #### General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. - Users may download and print one copy of any publication from the public portal for the purpose of private study or research. - You may not further distribute the material or use it for any profit-making activity or commercial gain - You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. ### Abstract #1502, 229th ECS Meeting, © 2016 The Electrochemical Society ### (Invited) In Situ TEM Study of Reduction and Reoxidation of NiO and NiO-YSZ Composites Jan Van herle^a, Quentin Jeangros^b, Jakob Birkedal Wagner^c, Thomas Willum Hansen^d, Aïcha Hessler-Wyser^b, Cécile Hébert^b, Rafal Dunin-Borkowski^e ^aEcole Polytechique Fédérale de Lausanne ^bEcole Polytechnique Federale de Lausanne ^cCenter for Electron Nanoscopy, DTU ^dTechnical University of Denmark ^eResearch Centre Juelich Nickel-yttria-stabilised zirconia (YSZ) solid oxide fuel cell (SOFC) anodes exhibit a dimensional instability when experiencing a reduction-oxidation cycle. As fuel is supplied on the anode side, as-sintered NiO reduces to metallic Ni and remains in this state during operation; yet several factors may lead to an accidental reoxidation of the Ni, which may rupture parts of the cell, hence degrading its performance. The mechanisms behind the dimensional instability of Ni(-YSZ) anodes were investigated through environmental transmission electron microscopy. NiO particles and NiO/YSZ composites were reduced and reoxidised in the microscope in a few mbar of H₂ and O₂, respectively, up to 500-850°C. Images, diffraction patterns, electron energy-loss spectra (EELS) and energy-filtered micrographs (EFTEM) were acquired to capture in situ the nanostructure, crystallography and chemistry. Reaction kinetics were retrieved from both the changes in shapes of the Ni L_{2,3} edges in energy-loss spectra and from energy-filtered images (with nm-resolution), to provide quantitative data, which were correlated to the nanostructure. Figure – (a) as-sintered NiO particles observed (b) after reduction (at 600° C during 210 min in 1.3 mbar of H_2) and (c) after reoxidation (at 600° C) after heating from 250°XC at a rate of 4°C/min in 3.2 mbar of H_2). In (d), the projected areas of (a–c) are superimposed to the image shown in (c). Reduction results in a shrinkage of the projected area of -15% between (a) and (b) in the region of interest circled in (d), while oxidation induces an expansion of the projected area of +65% between (b) and (c). The projected area of NiO expands by +40% between (a) and (c) after one redox cycle. While the surface nucleation of Ni domains, their growth and impingement control the reduction of NiO particles (Avramitype mechanism), the results revealed a modification of the mechanisms in the presence of YSZ, with the transfer of oxygen from NiO to the oxygen vacancies of YSZ triggering the reaction, before free surface reduction starts. Intragranular voids formed in both cases as oxygen is removed. The final Ni structure at high temperature was then observed to coarsen as it minimises its surface energy, with the percolation of the Ni phase influenced by the symmetry of its grain boundaries. The reoxidation of Ni is controlled mainly by the outward diffusion of Ni ions through the grain boundaries of the growing NiO film, rather than by a Ni/NiO or NiO/O₂ interfacial reaction limitation. While some NiO inward growth occurred through the formation of oxide film cracks, the Ni²⁺ outward diffusion process remains unbalanced and voids form in the NiO phase. These internal voids are responsible for the dimensional instability of the composite along with Ni coarsening at high temperature. Several parameters for improved performance and redox tolerance are identified based on these results. Complementary data included post-exposure microscopy, in situ X-ray diffraction and density functional theory computations. With the complementary XRD results and analyses done on larger sample volumes, larger H₂ gas flow and pressure than in the E-TEM conditions, it was shown that the reduction reaction in the ETEM is intrinsic, up to a conversion plateau of 60%, after which it is limited by too slow evacuation of the steam produced by the reduction reaction itself. Scanning TEM (STEM) with elemental analysis (EDX) was employed for trace impurity detection in NiO-YSZ structures, both for as sintered and exposed samples, showing the segregation of impurities (mainly Al and Si) at Ni-Ni interfaces in the form of a glassy film supporting Ni nanoparticles. Some of these impurities were unexpected and could affect the anode performance during operation. Figure 1