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 ABSTRACT  

Aims: Success of functional vascularized tissues repair depends on vascular support system 

supply and still remains challenging. Our objective was to develop a nanoactive implant 

enhancing endothelial cell activity, particularly for bone tissue engineering in regenerative 

medicine field. Materials & methods: We developed a new strategy of tridimensional implant 

based on cell dependent sustained release of vascular endothelial growth factor (VEGF) 

nanoparticles. These nanoparticles were homogeneously distributed within nanoreservoirs onto 

the porous scaffold, with quicker reorganization of endothelial cells. Moreover, the activity of 

this active smart implant on cells was also modulated by addition of osteoblastic cells. Results 

& conclusion: This sophisticated active strategy should potentiate efficiency of current 

therapeutic implants for bone repair avoiding the need of bone substitutes.  
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INTRODUCTION 

Surgical reconstructive procedures frequently require the use of additional tissues (autograft, 

xenograft, allograft) to restore the physiological functionality of damaged tissues. To overcome 

the complications associated with these methodologies (site morbidity, limited availability and 

host tissue reactivity), cell-based tissue engineering strategies using sophisticated biomaterials 

have been developed and represent a promising part of the regenerative medicine field. In the 

recent years, a plethora of advanced biomaterials mimicking extracellular matrix were designed 

based on the micro- and nano-scale environment of tissues, using nanotechnologies as 

graphene, nanogrooves and carbon nanotubes [1-8]. More recently, and with the development 

of the third generation materials, there has been increasing interest in developing nanoparticles 

and nanoreservoirs containing active molecules able to bio-activate scaffolds [9-14].  
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Bone regeneration is a complex, well-orchestrated physiological process, which occurs during 

normal healing of fractures, and is involved in continuous remodeling throughout adult life. In 

the past, a lot of active materials have been developed to improve bone tissue repair in vivo [15-

18]. The first generation of biomaterials developed involved inert materials without any 

interaction with another component (prostheses…). Second generation biomaterials (bioactive 

coating, bio-mimicking materials) were developed to promote biological activity while 

supporting implant functions, and were either resorbable or bioactive. The third generation 

biomaterials are a combination between medical device and biological components (bioactive 

protein coating, endothelialization) and possess both bioresorbable and bioactive properties 

[19,20].  

Applications for bone tissue engineering are various and depend on the severity of injuries to 

repair. The prosthesis domain aims for replacement after ablation due to severe injuries, the 

bone substitute domain, targets the substitution of important lesions (until 60 cm3) to prevent 

ablation. This domain needs to use materials that mimicking the mechanical properties of the 

healthy bone. More recently, the domain of regenerative medicine was developed to avoid 

filling by substitute, and promote the tissue regeneration by materials totally replaced by a 

functional and biological tissue without clear high mechanical properties. During the last few 

years, sophisticated biomaterials for bone regenerative medicine were developed in clinic, for 

example in treatment of non-union fractures or with guided tissue regeneration in the 

periodontal disease treatment. Those materials can be obtained made bioactive by adding living 

cells or active growth factors. Among these strategies for bone tissue regeneration, two kinds 

of active materials can be considered: (i) materials combined with active molecules targeting 

bone tissue regeneration (BMP-2, BMP-7) [15-18, 21-26] or (ii) active materials indirectly 

acting on bone repair through combination with angiogenic factors (VEGF, Ang1) [27-32], 

which have gained increased attention recently.  
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Indeed, vascularization of biomaterials prior to their implantation is a key feature for tissue 

repair as establishment of a vascular network provides nutrients, soluble factors, phosphate and 

calcium necessary for the bone healing process. For healthy tissue repair, the formation of blood 

vessels in 3D engineered biomaterials still remains challenging today [27-29, 33]. In order to 

increase vascularization within the implanted site, several active angiogenic materials were 

developed with majority based on cell activities [34-36] or added factors activity [30-32]. One 

of the main growth factor involved in angiogenesis is VEGF165 (Vascular Endothelial Growth 

Factor) which acts as an initiator and a modulator of the signaling cascade resulting in 

proliferation and migration of endothelial cells toward formation of new blood vessels [37, 38]. 

Moreover, VEGF possesses a pivotal role during bone healing [38], and the sustained release 

of this growth factor was shown to promote the efficacy of bone regeneration [30]. Not only 

does VEGF activate proliferation and migration of endothelial cells, but it also recruits 

mononuclear and macrophage cells, which produce additional angiogenic factors [39]. 

Consequently, during the last few years, tridimensional scaffolds associated with endothelial 

cells were developed for the cell-based strategy with the goal to promote biomaterials 

vascularization [33-36]. Various studies have reported the development of VEGF loaded 

nanoparticles for bone regeneration, wound healing angiogenesis, or inhibition of the graft 

shrinkage [40-43]. Most of these models can offer a controlled release of VEGF, depending on 

various parameters (temperature, pH, …). Herein, via entrapping VEGF-NPs in active 

nanoreservoirs, we can obtain cell-contact dependent access of NPs, depending solely of cells 

biological needs, avoiding short lived-effect and instability [44]. Moreover, this strategy of 

nanoreservoirs with chitosan allows keeping NPs with the biomaterials into the site of damage, 

and protected them from degradation activity due to their short life span, contrary to a passive 

release and diffusion in situ. Human umbilical vein endothelial cells (HUVECs) are easily 

extractable and expanded to large numbers. These cells are frequently used for in vitro studies 
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of angiogenesis since they are able to spontaneously organize into capillary-like structures 

without the help of additional angiogenic growth factors, and can spontaneously anastomose 

with the host vasculature [29, 45, 46].  

Recently, we developed via electrospinning method a thick porous 3D nanofibrous poly(ε-

caprolatcone) (PCL) scaffold able to accelerate the regeneration of a robust mineralized bone 

[22, 23, 47]. Herein, we have developed a double strategy combining both (i) HUVECs, and 

(ii) VEGF-nanoparticles (VEGF-NPs) active 3D nanofibrous scaffold to improve 

vascularization in tissue engineering for regenerative medicine applications focusing on bone 

regeneration. VEGF nanoparticles were used and integrated to the scaffold employing the layer-

by-layer technology, enabling an active cell-dependent release of the active molecule [14, 48]. 

Moreover, mesenchymal cells (human primary osteoblasts) were used to increase the efficiency 

of the designed nanoactive 3D scaffold, firstly by adhesion of endothelial cells (HUVECs), and 

then by improving endothelial cells activity.  

MATERIALS & METHODS 

3D nanofibrous PCL scaffold preparation  

PCL 80 kDa, analytical grade, was obtained from Perstorp (Malmö, Sweden). The PCL solution 

was prepared as previously described [22, 23, 47]: a solution of PCL (23% w/v in 

dimethylformamide: methylene chloride 1:1 v/v) was electrospun at high voltage (20 kV at the 

beginning), which was increased during the process (ending at 26 kV). The electrospinning 

device (EC-DIG electrospinning apparatus; IME Technologies, Eindhoven, Netherlands) 

delivered the solution at a constant rate of 1.2 mL/h in a 35% humidity and 30 °C atmosphere. 

The distance between the needle and the collector was set at 16 cm. The electrospun jet was 

focused in a 25 mm hole within a 2.5 mm-thick poly-(methyl methacrylate) mask plate placed 

over the conductor. The electrospining process was stopped when the designed material reached 

a thickness around 10 mm. Pieces of 3mm diameter and 700 um of thickness were then cut for 



 5 

the experiments. The 3D electrospun nanofibrous membranes were kept in a desiccator at 45°C 

to remove residual solvents.  

Preparation of VEGF-NPs and VEGF-NPs (HA)  

Chitosan hydrochloride (CS) (30-400 kDa, HEPPE medical chitosan GmbH (HMC+), 

Germany) nanoparticles (NPs) were produced using an ionotropic gelling method. Sodium 

tripolyphosphate (TPP) (85%, Sigma-Aldrich Co., St Louis, MO, USA) solution (1 mg/mL) 

was added drop-wise to chitosan hydrochloride solution (1 mg/mL) at a ratio of 1:5 w/w under 

constant stirring at room temperature. The resultant NPs suspension was left under stirring for 

20 minutes to ensure complete particle formation. hVEGF165 loaded NPs were obtained using 

the same method incorporating VEGF (VEGF-NPs) 200 µl (0.05 % w/v) with TPP solution. 

Chitosan/hyaluronic acid NPs were prepared by the same ionotropic gelling method, with 

modifications. Hyaluronic acid (HA) (10-20 kDa, Lifecore Biomedical, USA) (0.625 mg/mL) 

was dissolved in ultrapure water and mixed with TPP solution (1 mg/mL) at a ratio 3.75:1 w/w 

under constant stirring at room temperature. This poly-anionic phase was then added drop-wise 

to CS (1 mg/mL) at a ratio of 1:1.80 w/w (HA/TPP: CS) under constant stirring at room 

temperature. VEGF-NPs (HA) were obtained using the same method incorporating VEGF 

(VEGF-NPs (HA)) 200 µl (0.05 % w/v) with TPP/HA solution. To obtain dry powders, all were 

freeze-dried. Samples were frozen at -80 °C, 24h with trehalose at ratio 1:8 (Trehalose: CS) and 

then freeze-dried for 28 hours (Virtis Advantage, SP Scientific, USA). 

Nanoparticles’ size characterisation 

Particle size analyses of freeze-dried samples were performed using dynamic light scattering 

(DLS) (Zetasizer Nano series DTS 1060, Malvern Instruments Ltd, UK). 2mg of VEGF-NPs 

and VEGF-NPs (HA) were dispersed in 2 mL of MES buffer (2-N-morpholino ethane sulfonic 

acid MES; Sigma-Aldrich Co., 0.04M MES, 0,15M NaCl, pH 5.5), loaded into a cuvette and 

data recorded at 25 °C (n = 3 suspensions). 
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PLL-FITC staining of VEGF-NPs 

Glass slides were treated with Poly-glutamic acid (Sigma-Aldrich) (500 µm/mL) for 15 

minutes, rinsed with PBS for 15 minutes followed by addition with VEGF-NPs (3 mg/mL) for 

15 minutes at room temperature. Finally, samples were rinsed in PBS for 15 minutes and then 

with poly-lysine fluorescein-isothiocyanate (PLL-FITC) for 15 minutes. Glass slides were then 

observed under an epifluorescent microscope (LEICA DM 4000 B). 

Transmission electron microscopy observation For visualisation of VEGF-NPs and VEGF-

NPs (HA), freeze-dried sample was dispersed in water and applied to an electronic microscopy 

copper grid and stained with 2% phosphotungstic acid solution. The NPs were imaged by 

transmission electron microscopy (TEM) using an FEI CM 120 BioTwin transmission electron 

microscope (Philips Electron Optics BV, Netherlands) using acceleration voltage 120.0 kV 

(CM120, Philips Co, The Netherlands). 

VEGF-NPs nanoreservoirs formation on 3D PCL scaffold  

VEGF-NPs were dissolved at 2 mg/mL in MES buffer (pH 5.5) and chitosan was added at a 

concentration of 0.5 mg/mL (Protasan UP CL 113, Novamatrix, Sandvika, Norway). The 

creation of nanoreservoirs containing VEGF-NPs on the nanofibers was carried out using the 

layer-by-layer technology: briefly the 3D electrospun scaffold was dipped 6 times during 15 

minutes alternately in solutions of nanoparticles and BSA gold (Aurion, Binnenhaven, 

Wageningen, The Netherlands) or BSA (200 ng/mL) (Bovine Serum Albumin, Euromedex, 

Souffelweyersheim, France). Each bath was followed by a rinsing step with MES buffer. 

Scanning electron microscopy observation 

To analyse the morphology of the functionalized 3D PCL scaffolds, samples were fixed in 

paraformaldehyde 4% for 10 minutes at 4 °C, then dehydrated and observed with a scanning 

electron microscope (SEM Hitachi TM 1000 or FEG Sirion XL; FEI) in conventional mode 
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(high vacuum) by collecting either secondary electrons or a combination of secondary and retro-

diffused electrons.  

Cell culture 

Human umbilical vein endothelial cells (HUVECs) and human primary osteoblasts (HOBs) 

were obtained from PromoCell (Heidelberg, Germany). The cells were cultured in specific 

growth medium (endothelial cell growth medium, osteoblast growth medium, respectively, 

PromoCell). The cells were incubated at 37 °C in a humidified atmosphere of 5% CO2. When 

cells reached confluence, they were harvested with trypsin (Ozyme) and sub-cultured.  

HUVECs culture in collagen gel 

HUVECs culture medium was mixed with collagen I (2 mg/mL) (Institut de biotechnologie 

Jacques Boy, Reims, France) and NaOH (0.1M) was added to adjust the pH of the preparation. 

The cellular suspension of HUVECs, containing or not VEGF-NPs (2 mg/mL), was added and 

the final solution was seeded on 3D PCL scaffolds or in small Petri dishes, in a humidified 

atmosphere at 37 °C and 5% CO2 to polymerise the collagen gel. Cells in collagen gel on 

scaffolds were then cultured in their corresponding growth medium in a humidified atmosphere 

at 37 °C and 5% CO2. 

Cell viability  

Alamar Blue® (Thermo Fisher Scientific, Waltham, MA, USA) was used to assess cell 

metabolic activity over time. In this study, 4 x 104 human osteoblasts were first seeded on 3D 

PCL scaffolds containing or not nanoreservoirs of VEGF-NPs. After 7 days, 4 x 104 HUVECs 

were seeded on this pre-coated scaffold, and samples were cultured during a total of 28 days in 

a proliferative medium consisting of 50% HOB medium/50% HUVEC medium. Analyses were 

performed at D7, 9, 14, 21, and 28 days by culturing cells with a solution of 10% Alamar Blue®/ 

Dulbecco’s Modified Eagle’s Medium without phenol red (Lonza, Levallois-Perret, France) 

during 4 hours in a humidified atmosphere at 37 °C and 5% CO2. The same experiments were 
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performed with HUVECs cells in collagen gel seeded on 3D PCL equipped or not with VEGF-

NPs (D3, D7, D14, D21, and D28). Optical density of supernatants was measured at 575 and 

590 nm in order to determine the percentage of Alamar Blue® reduction. Statistical analyses 

were obtained by t-paired student test. 

Subcutaneous in vivo implantation in nude mice 

All procedures regarding animals and tissues were designed in agreement with the 

recommendations of the European Union (2010/63/EU), and were performed according to 

authorized investigator Dr N. Jessel (Director of the Osteoarticular and Dental Regenerative 

Nanomedicine team), holder of a personal license from Prefecture du Bas-Rhin (number 67-

315), who oversaw experiments done on mice. All experiments were performed in the 

Animalerie Centrale de la Faculté de Médecine de Strasbourg with the approval number A 67-

482-35 from the Veterinary Public Health Service of the Préfecture du Bas-Rhin, representing 

the French Ministry of Agriculture, Department of Veterinary Science.  

The study involved nude male mice (Crl: NIH-Foxn1nu ; Charles River, L’arbresle, France) 6 

weeks of age. The mice were anesthetized with an intra-peritoneal injection of 100 mg/kg of 

ketamine (VIRBAC Santé Animale; Centravet, Nancy, France) and injection of 10 mg/kg of 

Xylazine (Rompun® 2%) and animals were placed in a ventral decubitus position on a heating 

plate, under strict aseptic conditions. After skin incision, 3 mm-long 3D PCL scaffolds, with 

and without VEGF-NPs nanoreservoirs, which had been seeded with HOBs and HUVECs for 

2 weeks (D14), were subcutaneously implanted in the mice. The skin was then sealed with 

sutures and the mice’ behaviour was observed after waking up and during the incubation time. 

The mice were sacrificed with an intra-peritoneal injection of a lethal dose of ketamine and the 

samples were extracted after 4 and 8 days of implantation.  

Immunofluorescence staining 
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Samples were fixed with 4% paraformaldehyde solution for 10 minutes at 4 °C and 

permeabilised with a 0.1% Triton X-100 solution for an hour at room temperature. To 

specifically label the surface of endothelial cells, samples were incubated overnight at 4 °C with 

mouse monoclonal anti-CD31 (1/400, Santa Cruz Biotechnology Inc., Dallas, TX, USA), 

followed by 1 hour incubation at room temperature with the secondary anti-IgG of mouse 

coupled to Alexa Fluor 488 (Life Technologies). Samples were then incubated for 20 minutes 

in a solution of Alexa fluor 546-conjugated phalloïdin (1/200, Molecular Probes; Life 

Technologies, Fisher Scientific, Illkirch, France). After this step, a solution of 200 nM DAPI 

(Sigma-Aldrich) was added to mark the nuclei of exposed cells. Observation of the samples 

was carried out using an epifluorescence microscope (Leica DM 4000 B). 

RESULTS 

VEGF-NPs to design a nanoactive 3D biomaterial 

To increase the efficiency of tissue repairing in vivo, we developed an active tridimensional 

biomaterial equipped with VEGF-NPs. Our team previously developed a 3D porous PCL 

scaffold (Figure 1A) by the electrospinning method, for bone regeneration [22, 23, 47]. As 

previously described, this 3D-PCL implant (Figure 1B) present a superposition of spaced 

stratified layers of PCL nanofibers, facilitating macropores formation. This is an interconnected 

microporous/ macroporous scaffold, constituted of nanofiber

689±45 nm in diameter) able to mimic the collagen present in the extracellular matrix of healthy 

bone tissue, in favor of blood vessel colonization [22, 23, 47]. In this study, to make this 3D 

nanofibrous scaffold active, we first manufactured VEGF-NPs, and then added these to our 3D 

biomaterial. The VEGF-NPs are composed of chitosan forming the shell of the nanoparticles, 

and VEGF encapsulated within the nanoparticles. These VEGF-NPs were obtained by inotropic 

gelling and freeze-drying method (Figure 1C). These nanoparticles have a mean size of 175.4 

± 4.1 nm for VEGF-NPs and 167.5 ± 10.6 nm for VEGF-NPs containing hyaluronic acid 
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(VEGF-NPs (HA)) (Figure 1D). These observations, together with TEM observations (Figure 

1E and 1F), didn’t show significant differences in size between the two types of VEGF-NPs. 

Then, we functionalized the 3D Scaffold (Figure 2) by depositing VEGF-NPs. To this end, we 

employed our nanoreservoirs technology using the LbL technique [14]. After having tested 

different concentrations of VEGF-NPs to form the nanoreservoirs with chitosan solutions, we 

have found that the greatest condition to obtain a homogeneous deposition of NPs all along 

nanofibers of the scaffold, and in all the thickness of our 3D nanofibrous PCL was obtained 

with a concentration of VEGF-NPs of 2mg/mL (data not shown). The LbL (BSA/VEGF-NPs)6-

treated nanofibers (Figure 2B) showed a more homogeneous deposition of VEGF-NPs 

encapsulated within nanoreservoirs all along the fibers (Figure 2B), confirmed by co-

localization with Gold-labeled BSA LbL (Figure 2C), compared to a single adsorption of 

VEGF-NPs (Figure 2A). Hence, we were able to design a porous tridimensional scaffold 

mimicking ECM and homogeneously equipped with VEGF-NPs, ready to receive endothelial 

cells.  

VEGF-NPs active 3D Scaffold effect on endothelial cells (GEL) 

As endothelial cells require collagen motifs to adhere to a biomaterial, we used collagen gel to 

increase endothelial cells adhesion to the 3D PCL scaffold. Behavior of endothelial cells in the 

presence of VEGF-NPs was first analyzed and results were observed by fluorescence staining. 

In the presence of VEGF-NPs, endothelial cells showed regular linear, tubule-like, cell 

organization, (Figure 3C), compared to HUVECs cultured without additional VEGF-NPs 

(Figure 3B). As the endothelial cells organization in the presence of VEGF-NPs was confirmed 

in the collagen gel, we next analyzed the behavior of endothelial cells on the VEGF-NPs active 

3D-PCL scaffold. In this condition, Alamar Blue® test showed no significant difference 

between cells cultured on VEGF-NPs scaffold and non-functionalized scaffold at each time 

point (Figure 3A), showing biocompatibility of VEGF-NPs nanofibrous scaffold with 
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endothelial cells. However, significant difference was found for the non-functionalized scaffold 

between D3 and D28. This result could be explained by a loss of collagen gel containing 

endothelial cells, during the incubation time. Endothelial cells reorganization was also observed 

in this active tridimensional material (Figure 3E). Hence, we showed that our 3D PCL scaffold 

equipped with VEGF-NPs was active, and biocompatible for rapid endothelial cells activity and 

reorganization.  

Double effect of VEGF-NPs active 3D PCL and HOB on Endothelial cells (HOB) 

 We sequentially used mesenchymal cells (HOBs) as a coating of VEGF-NPs active 3D PCL, 

for the adhesion of endothelial cells.  

We first investigated the biocompatibility of our 3D VEGF-NPs active nanofibrous material 

pre-seeded with HOBs during 7 days, and then covered by endothelial cells. Analysis showed 

an increase in the metabolic activity all along the culture and after seeding of endothelial cells 

on HOBs (Figure 4A). Interestingly, the metabolic activity was more important when 

endothelial cells were seeded on a HOB pre-coated VEGF-NPs active scaffold (Figure 4A) 

compared to cells seeded in collagen gel (Figure 3). At D14, a significant difference occurred 

with cells cultured on VEGF-NPs biomaterials, showing more significant metabolic activity 

than cells without VEGF-NPs (p = 0.018) (Figure 4A). Moreover, at D28, more tubule-like 

endothelial structures were observed on the VEGF-NPs 3D PCL scaffold (Figure 4C). These 

results were observed by indirect immunofluorescence against endothelial specific marker 

CD31 (Figure 4B, C). Endothelial cells (visible in green) were first able to adhere to the scaffold 

without any collagen gel (Figure 4B) and second, they were able to form tubule-like and linear 

structures on this double active implant (Figure 4C). We then subcutaneously implanted our 

double active scaffold in nude mice to observe its influence on host endothelial cells (Figure SI 

1). After 4 days and 8 days in vivo, the macroscopic view of the implant revealed that when 

equipped with VEGF-NPs NRs, it was able to increase the host vasculature recruitment (host 
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endothelial cells) towards implant by 20% compared to non-fonctionnalized one (Figure SI 1). 

These results show the potential double activity of our scaffold with regard to endothelial cells. 

The effect of our implant on tubule-like structures formation was obtained by the addition of 

VEGF-NPs and improved by the pre-coating with human osteoblast cells HOBs.  

DISCUSSION 

VEGF-NPs encapsulated in nanoreservoirs on a 3D scaffold to accelerate implant 

vascularization. 

In the last decade, a large variety of active biomaterials have been developed for tissue 

engineering [1,12-14, 21-26, 49-60]. Focusing on either cartilage or bone tissue regeneration 

and controlled and active release of growth factor, our team has developed several active 

nanofibrous materials equipped with active nanoreservoirs of BMP-2 and BMP-7 [14, 21-26]. 

These natural collagen (Bio-Gide®) or polymeric (PCL) implants showed great potential in 

regenerative nanomedicine for bone regeneration with primary autologous cells (human 

mesenchymal stem cells, human primary osteoblasts) [14, 21-26]. The tridimensional 

electrospun PCL nanofibrous scaffold appeared to be promising due to its biomimicking 

architecture, with high porosity and enhanced pore interconnectivity, improving cell 

colonization and infiltration [22, 23]. Particularly for bone tissue engineering and blood supply 

during the early stages of post-implantation, it is necessary to provide a fast and sufficient blood 

perfusion within implants for calcium and phosphorus distribution, nutrients and oxygen 

diffusion, and elimination of wastes. Bone healing can be improved by adjusting the speed of 

vascularization and during the last 5 years, attempts have been made to increase vascularization 

in the tissue-engineering field [27-29, 33, 38-39]. Hence, basic strategies using scaffolds 

focused firstly on the use of cells (HUVEC, EPC) [30-32], and secondly on the use of active 

molecules (VEGF, Ang1, ...) operating on endothelial cells [34-36] to promote proliferation, 

migration, sprouting and establishment of functional blood vessel. In our strategy, we chose to 
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use not only VEGF active molecules (VEGF-NPs), but also endothelial and mesenchymal cells. 

VEGF plays a pivotal role in bone healing and remodeling. Moreover, if a local excessive dose 

of VEGF is released over a short time period, this leads to generation of non-functional and 

leaky blood vessels. To this end, a more sustained release over time is required to promote 

angiogenesis [30], which is the case in our strategy of nanoreservoirs. Hence, the effects of 

VEGF on biological processes are dose dependent. Our technology of nanoreservoirs created 

by LbL allowed a homogeneous distribution of VEGF-NPs all over the scaffold and enabled an 

active and controlled released of VEGF-NPs, dependent on the cells contact to the 

nanoreservoirs [14, 48]. In our strategy, HUVECs cells will recognize and adhere to chitosan, 

whether it is present on NPs or in our nanoreservoirs functionalization. In the case of active 

nanoreservoirs, cells will degrade by enzymatical reaction nanoreservoirs and will have an 

access to the NPs containing VEGF. Moreover, encapsulated active molecules represent a 

major advantage considering the short half-life of the VEGF growth factor (50 min). Our 

nanoreservoir technology overcomes potential damages that can occur to VEGF by protecting 

it within nanoreservoirs. 

Double effect of VEGF-NPs and mesenchymal cells (HOBs) on endothelial cells 

organization.  

Our nanofibrous scaffold was obtained from polycaprolactone by electrospining. This 

nanostructured material has already shown its efficacy in terms of bone regeneration with 

mesenchymal stem cells and primary human osteoblastic cells [14, 21-23]. Moreover, this 3D 

material, leads to an homogeneous attachment of osteoblastic cells [14, 21-23]. When dotted 

with chitosan-growth factor nanoreservoirs, 3D PCL present an adhesion of cells specifically 

in clusters onto the nanoreservoirs, contrary to non-functionalized PCL. The adherence of 

osteoblastic cells in cluster will also create a cluster of endothelial cells adhesion where they 

will reorganise, thanks to the angiogenic environment that could be provided by osteoblastic 
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cells. However, adhesion of endothelial cells requires collagen moieties [61, 62]. Hence, in this 

study we used a collagen gel to improve endothelial cells adhesion. In these conditions, 

HUVECs were able to re-organize linearly, in the presence of VEGF-NPs directly in collagen 

gel or onto the 3D PCL scaffold. However, the use of collagen with 3D PCL scaffold presents 

technical limitations. Hence, in this study we adapted another alternative to improve endothelial 

cells adhesion to PCL, with the use of functionalized PCL scaffolds pre-coated with 

mesenchymal cells. The sequential seeding in our study, with mesenchymal osteoblastic cells 

prior to endothelial cells lead to a primo-access to the VEGF for mesenchymal cells. These cells 

will serve as i) anchor to endothelial cells attachment to the biomaterial and ii) secretor of 

growth factor activation reorganisation of endothelial cells. 

In this study we developed an active scaffold able to improve and accelerate endothelial cells 

organization in tubule-like structures and host vasculature recruitment in the implant after 

implantation to ameliorate tissue-engineering efficacy. After showing the efficiency of VEGF-

NPs on HUVECs behavior, we used HOBs to improve their adhesion on PCL scaffold. 

Actually, cells of mesenchymal origin, either by their capacity to secrete extracellular matrix 

(decellularized matrix) or by their own particular nature, were exploited to improve cell 

attachment on non-collagen materials [48, 63, 64]. Process of angiogenesis and bone formation 

are thought to be in close interaction in bone healing. Moreover HOBs and mesenchymal stem 

cells are known to increase the stability of in vitro and in vivo tubule-like structure formation 

by endothelial cells [29, 65]. Recently, much attention has been implemented in endothelial 

cells as mediators of osteogenic differentiation, since the combined use of mesenchymal cells 

(HOBs, MSCs) significantly enhanced the ability of osteogenic differentiation tissue in vitro 

[22, 23, 66-68]. With the combination of the two strategies in one material (VEGF-NPs and the 

use of HOBs), we were able to accelerate host vascularization of the implant in vivo. These 

results could be explained by the fact that VEGF was not only available via our NPs for 
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exogenic endothelial cells added to the scaffold, but also that HOBs and HUVECs used 

synergistically secrete more angiogenic factors compared to HUVECs alone [69]. Moreover, 

the access of HOBs to the VEGF-NPs can increase the secretion of angiogenic factors in the 

implant, resulting in the VEGF molecules acting directly on osteoblasts proliferation and 

migration [70]. Thus, in our double strategy, Endothelial cells will adhere to the VEGF-NPs 

material via the previous matrix secretion of HOBs. HOBs, degrading nanoreservoirs by 

enzymatic reaction, will have an access to the VEGF-NPs, and will secrete angiogenic factor 

used by HUVECs. Based on the capacity of exogenous endothelial cells to anastomose with 

host vasculature [29], we subcutaneously implanted our double active implant and observed an 

enhanced initiation of host vasculature in the implant containing VEGF-NPs compared to the 

non-functionalized scaffold. Controlled drugs release is an important field for human health. In 

most cases, the developed materials for regenerative medicine, using VEGF [40-43] lead to a 

high-dose passive release with overdoses, side effect, and the progression of tumors [71], 

particularly for regeneration of tissues compromised after irradiation. With our double strategy, 

VEGF release is sustained and dependent of cells adhesion and reliant on their own needs. 

Moreover, the growth factor release is localized at the desired site, avoiding thus side effects. 

CONCLUSION 

In the last few years, new tissue-engineering strategies for bone repair have focused on 

vascularization to improve the quality of repaired tissues. In this work, our aim was to develop 

a new strategy of active implant leading to improve endothelial cells organization. This strategy 

can improve vascularization in situ and can enhance the repair potential of tissues in vivo. In 

this study, we developed a 3D biodegradable and polymeric scaffold, highly porous, active for 

endothelial cells organization and improving the speed of cell reorganization by incorporating 

VEGF-NPs. This scaffold was active towards endothelial cells not only via the incorporation 

of VEGF-NPs, but also via incorporation of osteoblast cells as pre-coating on our 3D PCL 
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nanofibrous scaffold. This work highlights the nanofibrous implant potential, offering an active 

and sustained release of angiogenic growth factor for regenerative medicine application. The 

double effect obtained in vivo with this living implant could be transfered to the clinic, taking 

advantage of the therapeutic potential of mesenchymal stem cells. We also think that this new 

generation of sophisticated implant is adaptable for engineering of other tissues, since it can be 

equipped with other kinds of cells or active molecules.  
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Summary points 

- Design of a tridimensional active material for regenerative medicine 

- We have developed here a VEGF active tridimensional polymeric material containing a 

homogeneous repartition of nanoparticles with a cell-contact dependant active release. 

- The entrapment of VEGF nanoparticles in nanoreservoirs is able to have an effect on 

endothelial cells behaviour. 

-This material offers an active and sustained release of angiogenic growth factor for 

regenerative medicine application. 

- Double strategy to promote endothelial cell reorganization for regenerative medicine 

-The adhesion of mesenchymal cells onto the VEGF nanoreservoirs material enables to 

potentiate its own capacity to act on endothelial cells behaviour.  

-The use of mesenchymal cells and VEGF nanoparticles can increase the endothelial cells 

reorganisation 

- This double strategy can promote angiogenesis after implantation and can potentiate the 

current implants used in regenerative medicine. 
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