199 research outputs found

    Vomiting and wasting disease associated with hemagglutinating encephalomyelitis viruses infection in piglets in jilin, china

    Get PDF
    One coronavirus strain was isolated from brain tissues of ten piglets with evident clinical manifestations of vomiting, diarrhea and dyskinesia in Jilin province in China. Antigenic and genomic characterizations of the virus (isolate PHEV-JLsp09) were based on multiplex PCR and negative staining electron microscopy and sequence analysis of the Hemagglutinin-esterase (HE) gene. These piglets were diagnosed with Porcine hemagglutinating encephalomyelitis virus (PHEV)

    Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires

    Get PDF
    Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time, nanotubes or nanowires can be obtained. Tubular nanostructures can be obtained at short time, while nanowires take longer time to form. This formation mechanism is applicable to design and synthesize other metal nanostructures and even compound nanostuctures via template-based electrodeposition

    Normal tissue toxicity after small field hypofractionated stereotactic body radiation

    Get PDF
    Stereotactic body radiation (SBRT) is an emerging tool in radiation oncology in which the targeting accuracy is improved via the detection and processing of a three-dimensional coordinate system that is aligned to the target. With improved targeting accuracy, SBRT allows for the minimization of normal tissue volume exposed to high radiation dose as well as the escalation of fractional dose delivery. The goal of SBRT is to minimize toxicity while maximizing tumor control. This review will discuss the basic principles of SBRT, the radiobiology of hypofractionated radiation and the outcome from published clinical trials of SBRT, with a focus on late toxicity after SBRT. While clinical data has shown SBRT to be safe in most circumstances, more data is needed to refine the ideal dose-volume metrics

    Recent developments in mushrooms as anti-cancer therapeutics: a review

    Get PDF
    From time immemorial, mushrooms have been valued by humankind as a culinary wonder and folk medicine in Oriental practice. The last decade has witnessed the overwhelming interest of western research fraternity in pharmaceutical potential of mushrooms. The chief medicinal uses of mushrooms discovered so far are as anti-oxidant, anti-diabetic, hypocholesterolemic, anti-tumor, anti-cancer, immunomodulatory, anti-allergic, nephroprotective, and anti-microbial agents. The mushrooms credited with success against cancer belong to the genus Phellinus, Pleurotus, Agaricus, Ganoderma, Clitocybe, Antrodia, Trametes, Cordyceps, Xerocomus, Calvatia, Schizophyllum, Flammulina, Suillus, Inonotus, Inocybe, Funlia, Lactarius, Albatrellus, Russula, and Fomes. The anti-cancer compounds play crucial role as reactive oxygen species inducer, mitotic kinase inhibitor, anti-mitotic, angiogenesis inhibitor, topoisomerase inhibitor, leading to apoptosis, and eventually checking cancer proliferation. The present review updates the recent findings on the pharmacologically active compounds, their anti-tumor potential, and underlying mechanism of biological action in order to raise awareness for further investigations to develop cancer therapeutics from mushrooms. The mounting evidences from various research groups across the globe, regarding anti-tumor application of mushroom extracts unarguably make it a fast-track research area worth mass attention

    Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis.

    Get PDF
    The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity

    Measurements of normalized differential cross sections for tt̄ production in pp collisions at √(s)=7  TeV using the ATLAS detector

    Get PDF
    Measurements of normalized differential cross sections for top-quark pair production are presented as a function of the top-quark transverse momentum, and of the mass, transverse momentum, and rapidity of the t¯t system, in proton–proton collisions at a center-of-mass energy of √s=7  TeV. The data set corresponds to an integrated luminosity of 4.6  fb−1, recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one lepton and at least four jets with at least one of the jets tagged as originating from a b-quark. The measured spectra are corrected for detector efficiency and resolution effects and are compared to several Monte Carlo simulations and theory calculations. The results are in fair agreement with the predictions in a wide kinematic range. Nevertheless, data distributions are softer than predicted for higher values of the mass of the t¯t system and of the top-quark transverse momentum. The measurements can also discriminate among different sets of parton distribution functions

    Search for high-mass dilepton resonances in pp collisions at s√=8  TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to dielectron or dimuon final states. Results are presented from an analysis of proton-proton (pp) collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3  fb−1 in the dimuon channel. A narrow resonance with Standard Model Z couplings to fermions is excluded at 95% confidence level for masses less than 2.79 TeV in the dielectron channel, 2.53 TeV in the dimuon channel, and 2.90 TeV in the two channels combined. Limits on other model interpretations are also presented, including a grand-unification model based on the E6 gauge group, Z∗ bosons, minimal Z' models, a spin-2 graviton excitation from Randall-Sundrum models, quantum black holes, and a minimal walking technicolor model with a composite Higgs boson
    • 

    corecore