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RESEARCH ARTICLE Open Access

An integrated omics analysis reveals
molecular mechanisms that are associated
with differences in seed oil content
between Glycine max and Brassica napus
Zhibin Zhang1,2, Jim M. Dunwell3 and Yuan-Ming Zhang1*

Abstract

Background: Rapeseed (Brassica napus L.) and soybean (Glycine max L.) seeds are rich in both protein and oil, which
are major sources of biofuels and nutrition. Although the difference in seed oil content between soybean (~ 20%) and
rapeseed (~ 40%) exists, little is known about its underlying molecular mechanism.

Results: An integrated omics analysis was performed in soybean, rapeseed, Arabidopsis (Arabidopsis thaliana L. Heynh),
and sesame (Sesamum indicum L.), based on Arabidopsis acyl-lipid metabolism- and carbon metabolism-related genes.
As a result, candidate genes and their transcription factors and microRNAs, along with phylogenetic analysis and
co-expression network analysis of the PEPC gene family, were found to be largely associated with the difference
between the two species. First, three soybean genes (Glyma.13G148600, Glyma.13G207900 and Glyma.12G122900)
co-expressed with GmPEPC1 are specifically enriched during seed storage protein accumulation stages, while the
expression of BnPEPC1 is putatively inhibited by bna-miR169, and two genes BnSTKA and BnCKII are co-expressed
with BnPEPC1 and are specifically associated with plant circadian rhythm, which are related to seed oil biosynthesis. Then,
in de novo fatty acid synthesis there are rapeseed-specific genes encoding subunits β-CT (BnaC05g37990D) and BCCP1
(BnaA03g06000D) of heterogeneous ACCase, which could interfere with synthesis rate, and β-CT is positively regulated by
four transcription factors (BnaA01g37250D, BnaA02g26190D, BnaC01g01040D and BnaC07g21470D). In triglyceride synthesis,
GmLPAAT2 is putatively inhibited by three miRNAs (gma-miR171, gma-miR1516 and gma-miR5775). Finally, in rapeseed
there was evidence for the expansion of gene families, CALO, OBO and STERO, related to lipid storage, and
the contraction of gene families, LOX, LAH and HSI2, related to oil degradation.

Conclusions: The molecular mechanisms associated with differences in seed oil content provide the basis for
future breeding efforts to improve seed oil content.

Keywords: Glycine max, Brassica napus, Acyl-lipid biosynthesis, Transcription factor, miRNA, Gene network

Background
Seed storage lipids not only provide food for human dietary
consumption, but are also increasingly used as renewable
sources for biofuels [1, 2]. In oil crops, such as Arabidopsis,
soybean, rapeseed and sesame, seed oil content varies from
20 to 60%. Interestingly, the total seed storage reserves in
soybean seed, consisting of ~ 20% oil and ~ 40% protein [3],

is almost equal to the protein (~ 20%) and oil (~ 40%) con-
tents in rapeseed [4]. As we know, most of the raw material
required for seed oil and protein biosynthesis in rapeseed
and soybean are derived from carbohydrate degradation
[5]. And it should be noted that substrate competition be-
tween seed oil and protein synthesis exists in oilseed crops
[6, 7]. This is because phosphoenolpyruvate (PEP), a carbon
compound derived from glycolysis, is not only used to
synthesize acetyl-Coenzyme A (acetyl-CoA), which serves
as a substrate in the first step of de novo fatty acid synthe-
sis, but is also required for the synthesis of oxaloacetate
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(OAA), which serves as a substrate in amino acid synthesis.
Thus, carbon metabolism is related to oil synthesis, and
boosting the carbon flow to lipid synthesis can significantly
increase seed oil content [8].
In the past several decades, more than 700 acyl-lipid

metabolism-related genes and several hundred genes
participating in carbohydrate metabolism have been iden-
tified in Arabidopsis thaliana [9, 10]. Among these genes,
more than 280 have been confirmed in A. thaliana
mutants as associated with acyl-lipid metabolism (http://
aralip.plantbiology.msu.edu) [11]. Meanwhile, many genes
have been experimentally validated to be closely related to
seed oil content. For example, phosphoenolpyruvate
carboxylase (PEPC) in cotton [12], acetyl-CoA carboxylase
(ACCase) in rapeseed [13] and potato [14] participate in
de novo fatty acid biosynthesis; fatty acylthioesterase B
(GmFatB) in soybean [15] and patatin-related phospholip-
ase As (pPLAs) in Arabidopsis [16] are involved in fatty
acid elongation; glycerol-3-phosphate dehydrogenase
(GPDH) in rapeseed [17], glycerol-3-phosphate acyltrans-
ferase (GPAT) in Arabidopsis [18], 2-lysophosphatidic acid
acyltransferase (LPAAT) in Arabidopsis [19] and cotton
[20], acyl-CoA: diacylglycerol acyltransferase (DGAT) in
Arabidopsis [21, 22], maize [23], and rapeseed [24] are re-
lated to TAG synthesis; oleosins (OLE1) in Arabidopsis
[25] participates in lipid droplet assembly and storage. In
addition, some transcription factors (TFs) have been
found to be associated with seed oil content, i.e., WRIN-
KLED1 (WRI1) [26], LEAFY COTYLEDON1 (LEC1) [27,
28], LEAFY COTYLEDON2 (LEC2) [29], FUSCA3
(FUS3) [30], GmDof4 and GmDof11 [31], GmbZIP123
[32], GmMYB73 [33], GmDREBL [34], GmNFYA [35],
GmZF351 [36], and ABSCISIC ACID INSENSITIVE3
(ABI3) [37, 38]. However, all the above studies involved
only a single lipid-related gene or transcription factor.
Seed oil content is typically a quantitative trait regulated
by multiple genes. As we know, these genes have been
identified in the form of quantitative trait loci in soybean
and rapeseed in the past decades [39–43].
In reality, acyl-lipid metabolism is a complex biological

process that includes at least conversion of sucrose to
pyruvate, plastidial de novo fatty acid (FA) synthesis,
endoplasmic triacylglycerol (TAG) biosynthesis, and
oil-body assembly. It is therefore important to determine
whether specific combination of multiple genes from
multiple metabolic pathways can increase seed oil con-
tent more effectively as compared with the manipulation
of an individual gene. For example, it was found that
Arabidopsis seed-specific overexpression of WRI1 and
DGAT1 combined with suppression of SDP1 leads to
higher seed oil content than the manipulation of each
gene individually [44]. Additionally, the simultaneous
overexpression of GmFabG (Glyma.12G092900), GmACP
(Glyma.09G060900) and GmFAD8 (Glyma.03G056700)

can significantly increase soybean seed oil content [45].
The down-regulation of CaFAD2 and CaFAE1 in crambe
with the FAD2-FAE1 RNAi vector led to a significant in-
crease in the seed oil to 80% compared to 13% for the wild
type [46]. Seed-specific simultaneous overexpression of
BnGPDH, BnGPAT and ScLPAAT genes in transgenic
rapeseed may further enhance the desirable oil content
relative to single-gene overexpression [47]. Moreover, Yu
et al. [48] developed a complete analysis platform of func-
tional annotation for the soybean genes involved in
acyl-lipid metabolism, and this makes the study of acyl
lipid metabolism more efficient and accurate. However,
none of the above studies were conducted at the whole
genome level.
With the rapid development of sequencing technol-

ogy, more and more plant genomes have been se-
quenced, and this accelerates the progress of research
on acyl-lipid metabolism [49–53]. Troncoso-Ponce et
al. [10] showed that the expression stoichiometry of
most key lipid-related genes was relatively conserved
during seed development in Ricinus communis, Brassica
napus, Euonymus alatus and Tropaeolum majus. Wang
et al. [54] analyzed the expression differences of key
ovule-specific genes between non-fibrous Raymond’s
cotton and the upland cotton with fiber. Zhang et al.
[55] dissected the molecular mechanisms of differences
in seed oil content between four high-oil dicotyledons
and three low-oil grass plants. However, little is known
about the molecular mechanism for the difference of
seed oil contents between soybean and rapeseed.
To understand the molecular mechanisms of the differ-

ence of seed oil content between rapeseed and soybean,
an integrated omics analysis was performed in Arabidop-
sis, rapeseed, soybean and sesame based on Arabidopsis
acyl-lipid metabolism- and carbon metabolism-related
genes. The integrated omics analysis included gene copy
number variation, expression pattern, microRNA/tran-
scription factor, phylogenetic and co-expressional network
analyses. Thus, candidate genes, transcription factors, and
microRNAs that may be responsible for the difference
were identified. These results provide a novel explanation
for differences at the whole genome level and the basis for
future breeding efforts to improve seed oil content in oil-
seed crops.

Results
Identification of candidate genes related to lipid
biosynthesis
To identify orthologous genes in soybean and rape-
seed, we used OrthoMCL to cluster putative OGs of
genes across Arabidopsis, soybean, rapeseed and
sesame. As a consequence, 172,626 (81.83%) protein-
coding genes from the four species were clustered into
27,236 OGs (Additional file 1: Table S1), with each
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group representing a gene family. Among these gene
families, 11,314 (41.54%) were defined as rapeseed-
specific paralogous gene clusters without soybean
genes, and only 3391 (12.45%) were soybean-specific
families (Additional file 1: Table S2). In addition, 1687
OGs were identified to have one copy of a soybean
gene and multiple copies for rapeseed genes, and 446
OGs with one copy for the rapeseed gene and multiple
copies for soybean genes (Additional file 1: Table S2).
To date, more than 700 Arabidopsis acyl-lipid metab-

olism genes have been detected, of which 135 are dir-
ectly involved in the processes of de novo fatty acid
synthesis, triglyceride biosynthesis and lipid droplet for-
mation. Using the method as described by Troncoso-P
once et al. [10], we also extracted 238 Arabidopsis
carbon-metabolism genes. Subsequently, searches using the
373 genes as queries were performed to obtain lipid
biosynthesis-related homologous gene families (Additional
file 1: Table S3). As a result, 230 putative OGs related to
lipid synthesis were identified, which include 781 soybean
genes and 1267 rapeseed genes (Additional file 1: Table S4).

Copy number variation and expression clustering of
candidate genes related to lipid biosynthesis
In order to eliminate the effect of species ploidy, the
relative copy number of a gene was used to measure the
difference of copy number of homologous genes be-
tween species. Of the above 230 OGs related to lipid
synthesis, 44 were found to have differences in relative
copy number of a gene between soybean and rapeseed
(Additional file 1: Table S5).
To cluster and visualize the expressional patterns of

all 2048 rapeseed and soybean genes in the 230 OGs,
we exploited STEM software [56] to analyze the expres-
sion data of four seed development stages in rapeseed
(GSE77637, [57]) and soybean (GSE42871, [58]). In this
study, R3, R4, R7 and R8 stages in soybean and 2, 4, 6,
and 8 weeks after pollination (WAP) in rapeseed were
defined as t1’, t2’, t3’ and t4’ in soybean and t1, t2, t3
and t4 in rapeseed, respectively. Results showed that
2048 genes were grouped into 20 clusters, including
three up-regulation patterns (cluster13, cluster16 and
cluster18) and one down-regulation profile (cluster3) dur-
ing stages with rapid accumulation of seed oil (Additional
file 2: Figure S1). Additionally, there were 23, 202, 86 and
22 genes in cluster3, cluster13, cluster16 and cluster18,
respectively (P-value < 0.05) (Additional file 2: Figure S2).
Based on the above two results, 192 soybean and 292

rapeseed candidate genes were inferred to be related to
the differences of seed oil content between rapeseed and
soybean. According to the sequence homology with
Arabidopsis genes, 484 genes were found to putatively
encode a series of core enzymes. For example, GRF2 and
RBCS1A during photosynthesis; PGK, ApS1, SUC, PEPC

and PKp involved in carbon metabolism from sucrose to
pyruvate; PDK1, ACCase, KASII, HAD, KAR, FATA,
SAD and FAD2 in de novo fatty acid biosynthesis; and
PAP, PDCT participating in TAG synthesis, as well as
oil-body proteins OBO, CALO, STERO, and oil degrad-
ation genes LOX, LAH, HSI2 and DSEL (Fig. 1).
To further determine the functions of the above 484

genes, KEGG enrichment analysis was conducted using
KOBAS 2.0 [59]. As a result, the top 10 KEGG pathways
for soybean and rapeseed candidate genes were obtained
(Table 1). It was found that the two crops had eight
KEGG pathways in common, namely pyruvate metabol-
ism, carbon metabolism, biosynthesis of secondary me-
tabolites, glycolysis, purine metabolism, biosynthesis of
amino acids, carbon fixation in photosynthetic organ-
isms, and glycerophospholipid metabolism. In addition,
fatty acid biosynthesis in soybean is similar to fatty acid
metabolism in rapeseed. The results are consistent with
those in Troncoso-Ponce et al. [10] and Ohlrogge and
Browse [60], and thus ensure the reliability of candidate
genes in the next analysis.

Expression profiles of candidate genes responsible for the
difference of seed oil content between rapeseed and
soybean
The transcriptomic datasets from the seed developmental
stages in soybean (GSE42871) and rapeseed (GSE77637)
downloaded from the GEO (Gene Expression Omnibus)
database were used to validate the above candidate genes.
To compare the expressional profiles of each candidate
gene in soybean and rapeseed, relative expression content
for each gene was adopted in this study; this is defined as
the ratio of the expression of each gene to average expres-
sion of all the genes in the species. As a result, a majority
of candidate genes in rapeseed, except for phosphoenol-
pyruvate carboxylase (PEPC), Ribulose-1,5-bisphosphate
carboxylase/oxygenase small subunit (RBCS1A), lipoxy-
genase (LOX) and steroleosin (STERO), had higher rela-
tive expression than those in soybean, especially for PK
and ACCase (Additional file 2: Figure S3, Additional file 1:
Table S6).
More importantly, we noted some interesting phe-

nomena. First, GmPEPC had higher relative expression
at the early and middle seed development stages than
BnPEPC (Fig. 3), indicating that PEP may be more likely
to be used to synthesize protein in soybean seed,
because PEPC, a member of carboxyl lyase family, cata-
lyzes phosphoenolpyruvate (PEP) to produce oxaloacetic
acid (OAA) for amino acid biosynthesis. Then, the
relative expression contents of rapeseed genes encoding
four subunits (α-CT, β-CT, BC and BCCP) of heteroge-
neous acetyl-CoA carboxylase (ACCase), catalyzing the
first and committed reaction of de novo fatty acid bio-
synthesis in plastids, were higher than those of soybean
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genes in the oil rapid accumulation stages. Especially,
BCCP1 and β-CT were not expressed during soybean
seed development (Additional file 2: Figure S4). Finally,
GmPEPC1 (Glyma.06G277500) and GmPEPC3 (Glyma.
06G229900) had higher relative expression than PKp
and ACCase in soybean. Conversely, PKp-β (BnaC02g4
4850D), PKp-α (BnaA01g24280D) and ACCase had
higher relative expression than PEPC in rapeseed devel-
opment stages (Additional file 2: Figure S4). Therefore,
we deduced that PEPC, PKp and ACCase are most likely
to be the key genes that regulate the distribution of car-
bon sources in soybean and rapeseed seeds.

Transcription factors and microRNAs regulatory network
analysis of the candidate genes
To clarify the differences of regulatory networks of key
candidate genes in soybean and rapeseed, we identified
transcription factors (TFs) related to lipid biosynthesis
in seed development. TFs and their target genes were
downloaded from PlantTFDB v3.0 [61]. Together with
the results mentioned above, it was found that the
rapeseed-specific gene (BnaA10g13960D), encoding
β-CT subunit of ACCase, is positively regulated by four

zinc finger TFs, namely BnaA01g37250D, BnaA02g2619
0D, BnaC01g01040D and BnaC07g21470D (Table 2;
Additional file 2: Figure S5) [62].
Meanwhile, 639 soybean and 92 rapeseed mature

microRNAs were downloaded from miRBase (version
21). Their target genes were predicted using psRNATar-
get, a plant small RNA target analysis server. As a result,
4411 soybean and 1780 rapeseed miRNA-Target gene
pairs were obtained. Among these genes, 116 and 61
were associated with lipid synthesis in soybean and rape-
seed, respectively. Note that bna-miR169 inhibits the ex-
pression of the BnPEPC gene; this may facilitate a
greater carbon flow to de novo fatty acid synthesis, and
the expression of GmLPAAT2 gene is putatively inhib-
ited by gma-miR171, gma-miR1516 and gma-miR5775
(Table 2; Additional file 2: Figure S5).

Evolutionary analysis of PEPC gene family
Phylogenetic analysis and conserved motifs analysis of
PEPC gene family
Three plant-type PEPC genes (PTPCs) (AtPEPC1,
AtPEPC2 and AtPEPC3) and one bacterial-type PEPC
genes (BTPCs) (AtPEPC4) exist in A. thaliana [63]. To

Fig. 1 Candidate genes for the difference of seed oil content between soybean and rapeseed. a Relative copy number variation analysis of candidate
genes contributed to the difference of seed oil contents between soybean and rapeseed. The red genes in X-axis indicate more relative gene copies
in rapeseed over in soybean, and the opposite situation is expressed in black. b PK in plastid is composed of Alpha (α) and Beta (β) subunits. ACCase
contains homogeneous structure ACC2 and heterogeneous ACCase complex including α-CT, β-CT, BC, BCCP1 and BCCP2 subunits
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investigate the evolution of the PEPC gene family in soy-
bean and rapeseed, the full amino acid sequences
encoded by 33 PEPC genes in soybean, rapeseed and
Arabidopsis were used to construct a phylogenetic tree
using a neighbor-joining method. As a result, the PEPC
genes were grouped into two distinct families with four
subfamilies, which are consistent with those in A. thali-
ana (Fig. 2). In Fig. 2, GmPEPC1 is close to GmPEPC3
in its evolutionary relationship, and their expression pat-
terns during seed development in Additional file 2: Fig-
ure S4 are complementary. Meanwhile, the conserved
motifs of PEPC genes were further analyzed using
MEME [64]. Results showed that the motif structure of
GmPEPC3 was more conserved than that of BnPEPC3,
and the motif structures of BnPEPC1 and BnPEPC2 were
also relatively more conserved than that of BnPEPC3 (Fig.
2). Note that there are distinct differences of BTPCs be-
tween soybean and rapeseed, indicating the existence of
its extensive functional differentiation.

Evolutionary rate and positive selection analysis of PEPC
genes
To determine whether the genes of the PEPC gene fam-
ily are under different evolutionary constraints in soy-
bean and rapeseed, the ω (Ka/Ks) values for the above
genes were calculated using the branch model (BM) and
the branch-site model (BSM) of the Codeml program in
PAML. As a result, the evolution rate ω0 (Ka/Ks) was es-
timated to be 0.340 and log-likelihood was − 2343.655 if
the evolution rates at all branches were the same; six
evolution rates (ω) were estimated to be 0.078, 0.054,
0.106, 0.093, 0.495 and 0.175 and log-likelihood was −

2361.163 if the evolution rates changed across different
branches (Additional file 3: Table S7; Additional file 2:
Figure S6). Clearly, there was a significant difference be-
tween the above two models (Additional file 3: Table S7,
P-value = 4.278e-06). We also found that the ω value for
the bacterial-type PEPC soybean sub-branch (ω = 0.495)
was significantly higher than the ω0 value (= 0.340) and
the ω values for the other sub-branches were signifi-
cantly lower than the ω0 value (= 0.340). This indicates
that the BTPC genes have experienced positive selection
and the PTPC genes have experienced purifying selec-
tion. Furthermore, the BSM model was used to identify
positively selected sites. As a result, we observed signifi-
cant positive selection for soybean bacterial-type PEPC
genes and the amino acid sites of positive selection, as-
sociated with GmPEPC4, were 56F and 61 V (Additional
file 3: Table S8).

Differential analysis of PEPC1 gene co-expression
networks between soybean and rapeseed
The co-expression network of one gene is frequently
constructed by Pearson’s correlation coefficient [65, 66].
In the present study this method was used to construct
the co-expression networks of the PEPC1 gene in soy-
bean and rapeseed. The differences between the two net-
works were also used to identify extra candidate genes.
As a result, 121 soybean and 133 rapeseed genes were
co-expressed with GmPEPC1 and BnPEPC1, respect-
ively. Among these co-expressed genes, 17 were ortholo-
gous. The other genes were used to conduct KEGG
pathway enrichment analysis. In the top 10 KEGG path-
ways for soybean or rapeseed, the soybean-specific

Table 1 KEGG pathway enrichment analysis for candidate genes related to the differences of seed oil content between rapeseed
and soybean

KEGG pathways Soybean Rapeseed

ID Input
number

Background
number

P-value Corrected
P-value

ID Input
number

Background
number

P-value Corrected
P-value

Pyruvate metabolism ath00620 43 85 4.92E-80 3.65E-77 ath00620 80 85 1.03E-133 1.64E-132

Carbon metabolism ath01200 41 262 6.29E-58 2.34E-55 ath01200 75 262 2.99E-94 2.39E-93

Biosynthesis of secondary
metabolites

ath01110 42 1076 1.04E-35 3.52E-34 ath01110 85 1076 3.90E-65 1.25E-64

Glycolysis ath00010 21 117 3.37E-30 4.24E-29 ath00010 38 117 1.89E-48 5.03E-48

Purine metabolism ath00230 21 158 1.06E-27 9.51E-27 ath00230 38 158 3.43E-44 7.84E-44

Biosynthesis of amino acids ath01230 21 255 1.18E-23 7.77E-23 ath01230 38 255 3.31E-37 5.29E-37

Carbon fixation in photosynthetic
organisms

ath00710 12 69 1.97E-17 9.34E-17 ath00710 17 69 2.36E-20 2.90E-20

Glycerophospholipid metabolism ath00564 15 86 1.43E-21 8.06E-21 ath00564 30 86 4.48E-39 7.97E-39

Fatty acid biosynthesis ath00061 17 41 6.76E-30 8.37E-29

Fatty acid metabolism ath01212 46 67 8.95E-71 3.58E-70

Glycerolipid metabolism ath00561 11 53 8.03e-17 3.53e-16

Biotin metabolism ath00780 8 14 1.32E-12 1.40E-12
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biological process is “the synthesis of valine, leucine and
isoleucine”, involving Glyma.13G148600, Glyma.13G207
900 and Glyma.12G122900, and rapeseed-specific bio-
logical process is “plant circadian rhythms”, involving
genes BnSTKA (BnaC08g48660D, BnaA09g42220D, Bna
A01g21040D, BnaC08g34660D, BnaC01g42660D) and
BnCKII (BnaC08g30500D, BnaC02g33100D, BnaC04g0
5080D, BnaA02g24960D) (Fig. 3).

Discussion
PEPC, along with its miRNA and co-expressed genes,
which can affect the flow of carbon sources in seeds, may
contribute to the difference of seed oil content between
soybean and rapeseed
Seed oil content is almost negatively correlated to seed
protein content in soybean and rapeseed [67–69]. As we
know, PEP is used to synthesize acetyl-CoA under the
catalysis of pyruvate kinase (PK) and acetyl coenzyme A
carboxylase (ACCase) so that the PEP enters into the
fatty acid synthesis pathway. Additionally, PEP is also
used to synthesize oxaloacetate (OAA) under the cataly-
sis of phosphoenolpyruvate carboxylase (PEPC) so that
the PEP enters into the amino acid synthesis pathway.
Results in this study showed that PEPC genes, together
with their miRNA and co-expressed genes, may increase
the flow of carbon to the biosynthesis of amino acids in
soybean seed and to the de novo fatty acid synthesis in
rapeseed seed, resulting in the difference of seed oil

content between the two species (Fig. 4). The reasons
are as follows.
First, GmPEPC1 has higher relative expression at the

early and middle stages of seed development than
BnPEPC1, and bna-miR169 putatively inhibits the ex-
pression of BnPEPC. Although the bacterial-type PEPC
(BTPC) gene in A. thaliana can inhibit the expression
of the plant-type PEPC (PTPC) gene [63, 70–73], BTPC
genes in soybean have experienced positive selection
(Additional file 3: Tables S7 and S8) and it is possible
to lose the function of inhibiting the expression of
PTPC gene (GmPEPC1). In addition, Xu et al. [12]
increased the accumulation of cotton seed oil by the
down-regulation of GhPEPC1 via RNA interference in
transgenic cotton plants. These studies provide
evidence for greater carbon flow to amino acid metab-
olism in soybean seed and to de novo fatty acid synthe-
sis in rapeseed seed. This may partly explain why there
are high seed protein content in soybean and high seed
oil content in rapeseed.
Secondly, the expression of LPAAT2-encoding gene,

involved in triacylglycerol synthesis in soybean seed, is
putatively inhibited by three miRNAs (gma-miR171,
gma-miR1516 and gma-miR5775) based on the results
of bioinformatics analysis (Table 2).
Finally, gene co-expression network analysis helps us

to understand different biological pathways in soybean
and rapeseed. KEGG enrichment analyses of genes

Fig. 2 Phylogenetic tree and gene motif analysis of PEPC gene family. a Phylogenetic tree of PEPC gene family is constructed from the complete
alignment of 33 PEPC protein sequences in Arabidopsis, soybean, and rapeseed using the neighbor-joining method with 1000 bootstrap replicates
with the MEGA 7.0 software program. The bootstrap scores are indicated on the nodes, and the 4 PEPC branches, all of which are based on
Arabidopsis PEPC orthologous genes, are indicated in four color boxes. The representative gene of each branch is shown followed by an additional
abbreviation. b Conserved domains analysis of PEPCs. The domains of soybean genes in AtPEPC3 branch are relatively more conservative compared
with rapeseed genes. And the domains of rapeseed genes in AtPEPC1 and AtPEPC2 branches are relatively conservative. However, the differences of
gene domain in the bacterial AtPEPC4 branch are significant between soybean and rapeseed
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Fig. 3 Comparison of PEPC1 gene co-expression networks in rapeseed (a) and soybean (b). 17 genes in light pink are orthologous genes in rapeseed
and soybean. More than 100 genes in red were enriched in the same processes based on KEGG pathway enrichment analysis. The blue
nodes represent rapeseed genes enriched-specific in “plant circadian rhythms” (a) and soybean genes enriched-specific in “Valine, leucine
and isoleucine biosynthesis” (b), respectively

Fig. 4 Molecular mechanisms for the difference of seed oil content between soybean and rapeseed. Candidate genes contributed to the differences
of seed oil content between soybean and rapeseed obtained in the study were marked with red color. GRF2 and RBCS1A: photosynthesis; PGK, ApS1,
SUC, PEPC and PKp: carbon metabolism from sucrose to pyruvate; PDK1, ACCase, KASII, HAD, KAR, FATA, SAD and FAD2: in de novo fatty
acid biosynthesis; PAP and PDCT: TAG synthesis; OBO, CALO and STERO: oil-body protein genes; LOX, LAH, HSI2 and DSEL: oil degradation
genes. Among these candidate genes, BCCP1 (BnaA03g06000D) and β-CT (BnaC05g37990D) in heterogeneous acetyl-CoA carboxylase (ACCase) are
rapeseed-specific genes, and β-CT is positively regulated by four transcription factors (BnaA01g37250D, BnaA02g26190D, BnaC01g01040D and
BnaC07g21470D). The gene expression of PEPC1 in rapeseed is putatively inhibited by bna-miR169, while LPAAT in soybean putatively inhibited
by gma-miR171, gma-miR1516 and gma-miR5775 in triglyceride synthesis. The pink genes are speculated related specifically to high seed oil
content of rapeseeds, and the purple speculated specifically related to high seed protein content in soybean, which were both identified by
PEPC co-expression network analysis. Soybean genes participated in Branched-Chain Amino Acid (BCAA) synthesis may contribute to seed high protein content
by adjusting the flow of PEP and downstream protein biosynthesis. Rapeseed genes BnSTKA and BnCKII are likely to promote the triglyceride
synthesis by phosphorylating circadian TFs cca1/lhy and thus increase the seed oil content of rapeseed
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co-expressed with GmPEPC1 showed that three soybean
genes (Glyma.13G148600, Glyma.13G207900 and
Glyma.12G122900) were enrich-specific in the “leucine,
isoleucine and valine” synthesis pathway. Leucine, iso-
leucine and valine are the three major branched-chain
amino acids for protein synthesis. The content of
branched-chain amino acids in seeds is positively corre-
lated with the protein content in general, which can
effectively maintain the accumulation of storage proteins
in seeds [74]. Therefore, it is speculated that the expres-
sion of such soybean genes may be beneficial for the
accumulation of storage proteins in seeds. Meanwhile,
KEGG enrichment analysis of genes co-expressed with
BnPEPC1 revealed that nine rapeseed genes, encoding
serine/threonine-protein kinase (BnSKTA; BnaC08g48
660D, BnaA09g42220D, BnaA01g21040D, BnaC08g3466
0D and BnaC01g42660D) and Casein kinase II subunit
beta (BnCKII; BnaC08g30500D, BnaC02g33100D, BnaC
04g05080D and BnaA02g24960D), were specifically
enriched in the “plant circadian rhythm” category, which
can regulate seed oil metabolism and hormone signaling
pathway [75, 76]. Lipid metabolism is subject to diurnal
regulation at the early stages of seed development in
Arabidopsis [77]; diurnal differential expression of genes
encoding JcDof1, a dof TF of Jatropha curcas in
response to light signal, β-hydroxy-3-methylglutaryl-
CoA reductase and Cyp7A1, regulates seed oil synthesis
and accumulation [78, 79]. CIRCADIAN CLOCK ASSO-
CIATED1 (CCA1) and LATE ELONGATED HYPO-
COTYL (LHY) from the core clock system can affect
the reserve mobilization of storage lipid [77], but this
process is affected by the phosphorylation of protein
kinase (CK2) [80]. Therefore, the phosphorylation of
genes BnSTKA and BnCKII may promote the storage of
seed oil.

Rapeseed-specific genes encoding β-CT and BCCP1
subunits of acetyl-CoA carboxylase and transcription
factors may be associated with higher seed oil content
in rapeseed
β-CT and BCCP are important components for hetero-
geneous acetyl-CoA carboxylase (ACCase) [81, 82].
Overexpression of ACCase subunit genes can signifi-
cantly increase fatty acid content in oil crop seed [13,
14, 83]. In this study, soybean β-CT and BCCP1 was not
expressed, while BCCP2, BC and α-CT showed high ex-
pression during seed development stages (Additional file
2: Figure S4). This is consistent with the results of Zhang
et al. [55]. Meanwhile, genes BCCP1, BCCP2, BC, α-CT
and β-CT showed high expression during rapeseed seed
development stages. Especially, the β-CT subunit gene
(BnaA10g13960D) was positively regulated by four zinc
finger C2H2 transcription factors (BnaA01g37250D,
BnaA02g26190D, BnaC01g01040D and BnaC07g21470D)

predictably, which is consistent with the results of Jin et
al. [62]. Similarly, Li et al. [36] demonstrated that overex-
pression of GmZF351, a gene encoding a tandem CCCH
zinc finger protein, can activate lipid biosynthesis genes
and increase seed oil accumulation in soybean. Moreover,
Li et al. [84] found that transfer DNA insertional alleles
that completely eliminate the accumulation of BCCP2
have no perceptible effect on fatty acid accumulation,
while reducing the BCCP1 accumulation can dramatic-
ally decreases fatty acid accumulation in Arabidopsis
thaliana. This partly supports that rapeseed-specific
BCCP1 gene may associate with high seed oil content of
rapeseed. It should also note that RNA levels don’t always
equate to protein and/or lipid metabolite levels in plants
[85].

The expansion of gene families associated with lipid
storage and the contraction of gene families related to
lipid degradation may contribute to high seed oil content
in rapeseed
Seed triglyceride is mainly stored in lipid droplets, and
the size of the lipid droplets and the spatial distribution
of their assembly proteins affect seed oil content [86,
87]. In this study, it was found that the relative copy
numbers of genes encoding STERO, CALO and OLEs in
rapeseed are significantly higher than those in soybean
(Fig. 1, Additional file 1: Table S6), and such genes in
rapeseed are obviously up-regulated during stages of
rapid lipid accumulation (t2~t3) (Additional file 2:
Figure S3, Additional file 1: Table S6). On the other
hand, the gene families LOX, LAH and HSI2, related to
lipid degradation, have contracted in rapeseed. In other
words, the relative copy numbers of these genes are
much smaller than those in soybean (31/4 < 41/2, 10/4 <
24/2 and 8/4 < 8/2, (gene absolute copy numbers) /
(species polyploidy)). This relationship was also found
between soybean and sesame. Specifically, this latter spe-
cies shows contraction of gene families (LOX, LAH and
FAR1) related to lipid degradation and expansion of
gene families (LTP1 and SUT) related to lipid storage
[51]. Therefore, it was speculated that the contraction of
gene families related to lipid degradation and the expan-
sion of gene families related to lipid storage may be an
important reason for the higher seed oil content in rape-
seed than in soybean.
In order to further ascertain whether the degradation

of seed storage materials in oilseed crop is specialized in
an evolutionary sense, we investigated gene families
related to protein degradation in soybean, rapeseed and
sesame seeds. As we know, the degradation of protein in
plant cells is mainly mediated by the ubiquitin prote-
asome, lysosomal and caspase pathways. Among the
three pathways, the ubiquitination proteasome pathway
is the main pathway of storage protein degradation in
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oilseed crop seeds [88], and it mainly involves ubiquitin-
activating enzyme (E1), ubiquitin-conjugating enzyme
(E2) and ubiquitin ligases (E3) [89]. In this study, we
found that the relative copy numbers of genes encoding
E1, E2 and E3 in soybean, rapeseed and sesame were 4/
2 = 8/4 > 2/2, 44/2 < 105/4 > 23/2 and 33/2 > 52/4 > 10/2,
which are not consistent with the protein contents in
soybean, rapeseed and sesame seeds (~ 40%, ~ 20%, and
~ 17%). This indicates that the phenomenon, which has
a bias to consume protein or oil mainly to power the life
activities during seed development, does not occur in
the evolution of oil crops.

More evidence for candidate genes that are associated
with the seed oil content difference between soybean
and rapeseed
Many candidate genes predicted in this study could be
responsible for the difference of seed oil content be-
tween soybean and rapeseed have been experimentally
confirmed to be related to seed oil content. In addition
to those mentioned above, with the up-regulated expres-
sion for the genes BnGRF2 and BnRBCS1A and the
down-regulated expression of gene BnPDK1, Hu et al.
[69] cultivated a rapeseed line YN171 with a super high
seed oil content of 64.8% (Fig. 1). Similarly, with the
down-regulated expression of gene GmFAD2–1 by RNA
interference, seed oleic acid content in soybean in-
creased to 94.58% and the linoleic acid content de-
creased to < 3% (Fig. 1) [15].
Differentially expressed genes, associated with seed oil

content and identified among cultivars with different
seed oil content, also provide relevant evidence. Among
the 33 differentially expressed genes identified in rape-
seed by Xu et al. [90], PDAT (Additional file 1: Table S4)
and OBO (Fig. 1) are also found in the present study.
Among the 28 core enzymes involved in lipid synthesis
in soybean [55], 8 were also found in the present study
(Additional file 3: Table S9).
In this study, we are focusing on the difference of total

seed oil content between soybean and rapeseed. How-
ever, their other differences exist as well, i.e., seed oil
composition, grown climatic environment, nitrogen
fixation, and species characteristics, which likely affect
the conclusion in this study.

Conclusion
In this study, we identified candidate genes and their
transcription factors and microRNAs to explain the
difference in seed oil content between soybean and rape-
seed. First, PEPC, along with its microRNAs and co-ex-
pression genes, affect the carbon source flow in seeds,
which may lead to differences in seeds oil content. Then,
BCCP1 and β-CT and its transcription factors that are
characteristic of rapeseed may result in high seeds oil

content. Finally, the expansion of gene families related
to lipid storage, and the contraction of gene families re-
lated to oil degradation may play important roles on the
difference in seed oil content.

Methods
Data sources
Sequences were collected using the similar method de-
scribed by Tatusov et al. [91]. Protein-coding transcripts
of Arabidopsis (TAIR release 10, https://www.arabidopsi-
s.org/), rapeseed (release 4.1, http://www.genoscope.
cns.fr/brassicanapus/), soybean (release Wm82.a2.v1,
https://www.soybase.org/) and sesame (release 1.0, http:
//ocri-genomics.org/Sinbase/) were downloaded, respect-
ively. If a gene has multiple transcripts, the longest was
selected.
The transcriptome data of soybean (G. max Williams

82) [58] (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE42871) and rapeseed (B. napus Darmor-
bzh) [57] (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE77637. ) were downloaded from Gene
Expression Omnibus (GEO). Rapeseed transcriptome
data included four seed developmental stages: 2, 4, 6,
and 8 weeks after pollination (WAP), and soybean tran-
scriptome data included seven seed developmental
stages: whole seed 4 days after fertilization (DAF), whole
seed 12–14 DAF, whole seed 22–24 DAF, whole seed 5–
6 mg in weight, cotyledons 100–200 mg in weight, coty-
ledon 400–500mg in weight, and dry whole seed. Of
which, whole seed 12–14 DAF, whole seed 22–24 DAF,
cotyledon 400–500mg in weight, and dry whole seed in
soybean are almost respectively equal to 2, 4, 6, and 8
DAF based on the definition of soybean vegetative and
reproductive growth [92], which are consistent with 2, 4,
6, and 8 WAP in rapeseed. Thus, we selected the four
stages of soybean and rapeseed seed development men-
tioned above for subsequent analysis. The genes expres-
sion level (RPKM: reads per kilobase per million
mapped reads) were normalized and quantified by the
DESeq package in Bioconductor [93].

Delimitation of orthologous genes
Identification of orthologous groups (OGs) in Arabidop-
sis, soybean, rapeseed and sesame was conducted using
OrthoMCL software with default parameters [94]. Based
on all-against-all BLASTP of non-redundant protein se-
quences, clusters were obtained according to reciprocal
best similarity pairs between and within species, using
OrthoMCL software implemented by the Markov clus-
tering algorithm (MCL; http://micans.org/mcl/) [95]. To
obtain more accurate results, two other known methods,
namely Proteinortho [96] and Inparanoid 8 [97], were
also used to determinate OGs of soybean and rapeseed.
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Prediction of candidate genes related to carbon
metabolism and lipid biosynthesis
Acyl-lipid biosynthesis process is mainly involved in fatty
acid synthesis and elongation from pyruvate, TAG syn-
thesis, and oil-body storage. In Arabidopsis, 135 acyl-
lipid biosynthesis-related genes were downloaded from
ARALIP (http://aralip.plantbiology.msu.edu/) [9], and
238 carbon metabolism-related genes were also obtained
using the method of Troncoso-Ponce et al. [10] with a
slight modification. Such genes were used as query,
along with OGs, to identify carbon metabolism- and
lipid biosynthesis-related OGs. To further identify candi-
date genes for the differences of seed oil content, gene
expression pattern clustering and interspecific relative
copy numbers variation analysis were carried out. Gene
expression clustering analysis was performed using Short
Time-series Expression Miner (STEM, http://
www.cs.cmu.edu/~jernst/stem/) [56] with the following
parameters: Log normalize a time series vector of gene
expression values (v0, v1, v2, ..., vn) to (0, log2(v1/v0),
log2(v2/v0), ⋯, log2(vn/v0)), Minimum Absolute Expres-
sion Change 2, −p 0.05.

KEGG pathway enrichment analysis
Kyoto Encyclopedia of Gene and Genome (KEGG) path-
way enrichment analysis was performed using the online
tool KOBAS (version 2.0; http://kobas.cbi.pku.edu.cn/
index.php) [59]. The P-values for each KEGG biological
process was calculated by Fisher’s exact test [59]. To
control the false discovery rate (FDR ≤ 0.05), the Benja-
mini-Hochberg method was used to conduct multiple
testing correction [98]. In addition, the small term cutoff
value was set at 5.

Phylogenetic analysis and motif analysis
The full-length amino acid sequence alignments were
performed using MUSCLE [99] with default parameters
and then phylogenetic tree reconstruction was con-
ducted with both Neighbor Joining (NJ) and Maximum
Likelihood (ML) approaches in MEGA 7.0 [100]. In the
NJ method, parameter setups were as follows: - model:
poisson correction; Bootstrap: 1000 replicates; and gap/
missing data: pairwise deletion. To ensure the accurate-
ness of ML tree, which is constructed to eliminate the
long-branch attraction (LBA) caused by distant species,
we also used maximum likelihood approaches with
PhyML v3.0 [101], and estimated the best-fitting models
with the jModeltest software [102]. The phylogenetic
tree was displayed, annotated and managed using iTOL
(https://itol.embl.de/) [103]. Conserved functional motifs
were identified using the program Multiple Em for Motif
Elicitation [64] (MEME v4.11.2, http://meme-suite.org/

tools/meme) with the following parameters: - the width
of a motif was between 6aa and 50aa, and the number of
motifs was no more than 20.

Selective pressure and positive selection analyses
The amino acid sequences were aligned using MUSCLE
[99], alignment gaps were manually deleted, and then
used for following calculations. The ratio (ω value) of
nonsynonymous substitution rate (Ka) to synonymous
substitution rate (Ks) of homologous gene pairs was
computed with the maximum likelihood method of the
branch model in Codeml from the PAML package
(version 4.9) [104].
To test for the variation of the ω ratio among differ-

ent branches in gene trees, a branch-specific model was
used and conducted in Codeml. The branch-specific
model allows the ω ratio to vary among branches in the
phylogeny (model = 2, NSsites = 0), and it could be used
to test whether there are different ω values on particu-
lar lineages [105]; thus, this model can be compared
with the one-ratio model (model = 0, NSsites = 0) that
assumes a constant ω value across all branches using
the likelihood ratio test (LRT). The datasets used in Ka/
Ks ratio estimation were further used in the next posi-
tive selection analysis of the branch-site model (BSM)
using the Bayes empirical Bayes method described by
Yang et al. [104].

Transcription factor (TF)- and microRNA-targets analysis
Soybean and rapeseed microRNAs were downloaded
from miRBase (release 21, http://www.mirbase.org/)
[106]. psRNATarget (http://plantgrn.noble.org/psRNA-
Target) [107] was used to identify miRNA targets with
default parameters except for the Expectation (e) and
Max UPE, which were set at 3 and 25, respectively. The
transcription factors (TFs) and TF-target pairs were
downloaded directly from PlantTFDB 3.0 (http://
planttfdb.cbi.pku.edu.cn/) [61]. To ascertain whether
miRNAs controls target-genes expression in seed devel-
opment stages, bioinformatic analysis software miRDB
(http://mirdb.org/miRDB/) [108] was used to prelimin-
arily verify whether there is a putative binding site for
miRNAs in the 3′-UTR of target-genes mRNA.

Gene co-expression network analysis
Pearson’s correlation coefficients (r) were calculated
using the ‘cor’ function of R package. The gene
expression data (Reads Per Kilobase per Million
mapped reads: RPKM) was used to calculate the
correlation coefficients between genes. The criteria for
determining co-expressional genes were set at r ≥ 0.9 or
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r ≤ − 0.9 and P-values ≤ 0.05 [65]. Graphical visualization
of the gene co-expression network was performed
using Cytoscape 3.4.0 (http://www.cytoscape.org/) [109].
Genes co-expressed with the target gene, meeting the fil-
ter criteria, were further used to conduct KEGG pathway
enrichment analysis using KOBAS 2.0 [59].

Additional files

Additional file 1: Table S1. 27,236 OGs of all the protein-coding genes
in Arabidopsis thaliana, Glycine max, Brassica napus and Sesamum indicum.
Table S2. Comparisons of sequence similarity-based protein families
between Glycine max (gma) and Brassica napus (bna). Table S3. List
of selected genes related to carbohydrate metabolism and lipid biosynthesis
in Arabidopsis thaliana. Table S4. 230 candidate orthologous groups related
to oil synthesis of seed for soybean, rapeseed and Arabidopsis. Table S5.
Candidate orthologous groups (OGs) for the difference of seed oil content
between rapeseed and soybean. Note: Genes with red color were negatively
correlated with seed oil content and were obtained by cluster analysis of
gene expression. The 44 OGs with black color differed in gene relative copy
number between soybean and rapeseed. Table S6. Expressional contents
and relative copy number of candidate genes associated with the difference
of seed oil content in rapeseed and soybean. Note: The stages t1, t2, t3 and
t4 were defined as R3, R4, R7 and R8 in soybean, and 2, 4, 6, and 8 weeks
after pollination (WAP) in rapeseed, respectively. (XLSX 37341 kb)

Additional file 2: Figure S1. The expression patterns for the genes of
230 gene families related to oil biosynthesis. The expression clustering
analysis of 2048 soybean and rapeseed genes in the 230 gene families
was performed using Short Time-series Expression Miner (STEM, http://
www.cs.cmu.edu/~jernst/stem/) [56]. Here, t1 represents the seed oil ini-
tial synthesis stage; t2 to t3 represent the rapid accumulation period of
seed oil biosynthesis; t4 represents the gradual decline stage after the
seed oil accumulation content reaches the peak. In the end, all 2048
genes were clustered into 20 clusters. Figure S2. The expression profiles
(A-D) of candidate genes related to oil biosynthesis. One down-regulated
trend (profile 3) (A) and three up-regulated trends from t2 to t3 stages of
seed oil biosynthesis (profile 13, 16 and 18, respectively) (B, C, D). Figure
S3. Comparison of the expression patterns of the candidate genes be-
tween rapeseed and soybean. Note: t1-t4 and t1’-t4’ represent four seed
development stages in rapeseed and soybean, respectively. PKp-α and
PKp-β denote Alpha (α) and Beta (β) subunits of PK in plastid, respect-
ively. ACCase contains homogeneous structure ACC2 and heterogeneous
ACCase complex, which are composed of α-CT, β-CT, BC and BCCP. Fig-
ure S4. Comparison of the expression patterns of genes encoding en-
zymes PEPC, PK and ACCase. t1’, t2’, t3’ and t4’ represent R3, R4, R7 and
R8 at soybean seed development stages, and t1, t2, t3 and t4 represent 2,
4, 6 and 8 weeks after pollination (WAP) at rapeseed seed development
stages, respectively. Figure S5. Transcriptional regulation of key candi-
date genes for the difference of seed oil content between rapeseed and
soybean. Figure S6. Evolutionary rate of each branch of PEPC gene fam-
ily. ω0 = 0.340 represents the evolutionary rate when the evolutionary
rate of each branch is assumed to be the same. (PDF 1291 kb)

Additional file 3: Table S7. LRT results for selective pressure branch
model (Model 0 vs two ratio model 2, df = 6). Table S8. LRT results for
branch-site model (model A vs null model, df = 1). Table S9. Candidate
genes for the differences of seed oil content between the two species
and among cultivars in the same species. (PDF 93 kb)
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