436 research outputs found
Recommended from our members
Community-acquired pneumonia in children: cell-free plasma sequencing for diagnosis and management.
Community-acquired pneumonia (CAP) is a common cause of pediatric hospital admission. Empiric antibiotic therapy for hospitalized children with serious CAP now targets the most likely pathogen(s), including those that may demonstrate significant antibiotic resistance. Cell-free plasma next-generation sequencing (CFPNGS) was first made available for Pediatric Infectious Diseases physicians in June 1, 2017, to supplement standard-of-care diagnostic techniques. A retrospective chart review was performed for children hospitalized with CAP between June 1, 2017, and January 22, 2018, to evaluate the impact of CFPNGS. We identified 15 hospitalized children with CAP without other underlying medical conditions for whom CFPNGS was performed. CFPNGS identified a pathogen in 13 of 15 (86%) children compared with 47% for those using standard culture and PCR-based methods alone. Changes in antibiotic management were made in 7 of 15 (47%) of children as a result of CFPNGS
Design and Functional Validation of a Mechanism for Dual-Spinning CubeSats
The mission of the Micro-sized Microwave Atmospheric Satellite (MicroMAS) is to collect useful atmospheric images using a miniature passive microwave radiometer payload hosted on a low-cost CubeSat platform. In order to collect this data, the microwave radiometer payload must rotate to scan the ground-track perpendicular to the satellite's direction of travel. A custom motor assembly was developed to facilitate the rotation of the payload while allowing the spacecraft bus to remained fixed in the local-vertical, local-horizontal (LVLH) frame for increased pointing accuracy. This paper describes the mechanism used to enable this dual-spinning operation for CubeSats, and the lessons learned during the design, fabrication, integration, and testing phases of the mechanism's development lifecycle
Epidemiology, prehospital care and outcomes of patients arriving by ambulance with dyspnoea: An observational study
Background: This study aimed to determine epidemiology and outcome for patients presenting to emergency departments (ED) with shortness of breath who were transported by ambulance. Methods: This was a planned sub-study of a prospective, interrupted time series cohort study conducted at three time points in 2014 and which included consecutive adult patients presenting to the ED with dyspnoea as a main symptom. For this sub-study, additional inclusion criteria were presentation to an ED in Australia or New Zealand and transport by ambulance. The primary outcomes of interest are the epidemiology and outcome of these patients. Analysis was by descriptive statistics and comparisons of proportions. Results: One thousand seven patients met inclusion criteria. Median age was 74 years (IQR 61-68) and 46.1 % were male. There was a high rate of co-morbidity and chronic medication use. The most common ED diagnoses were lower respiratory tract infection (including pneumonia, 22.7 %), cardiac failure (20.5%) and exacerbation of chronic obstructive pulmonary disease (19.7 %). ED disposition was hospital admission (including ICU) for 76.4 %, ICU admission for 5.6 % and death in ED in 0.9 %. Overall in-hospital mortality among admitted patients was 6.5 %. Discussion: Patients transported by ambulance with shortness of breath make up a significant proportion of ambulance caseload and have high comorbidity and high hospital admission rate. In this study, >60 % were accounted for by patients with heart failure, lower respiratory tract infection or COPD, but there were a wide range of diagnoses. This has implications for service planning, models of care and paramedic training. Conclusion: This study shows that patients transported to hospital by ambulance with shortness of breath are a complex and seriously ill group with a broad range of diagnoses. Understanding the characteristics of these patients, the range of diagnoses and their outcome can help inform training and planning of services
Recommended from our members
The Prevention of Delirium and Complications Associated with Surgical Treatments (PODCAST) study: protocol for an international multicentre randomised controlled trial
Introduction: Postoperative delirium is one of the most common complications of major surgery, affecting 10–70% of surgical patients 60 years and older. Delirium is an acute change in cognition that manifests as poor attention and illogical thinking and is associated with longer intensive care unit (ICU) and hospital stay, long-lasting cognitive deterioration and increased mortality. Ketamine has been used as an anaesthetic drug for over 50 years and has an established safety record. Recent research suggests that, in addition to preventing acute postoperative pain, a subanaesthetic dose of intraoperative ketamine could decrease the incidence of postoperative delirium as well as other neurological and psychiatric outcomes. However, these proposed benefits of ketamine have not been tested in a large clinical trial. Methods: The Prevention of Delirium and Complications Associated with Surgical Treatments (PODCAST) study is an international, multicentre, randomised controlled trial. 600 cardiac and major non-cardiac surgery patients will be randomised to receive ketamine (0.5 or 1 mg/kg) or placebo following anaesthetic induction and prior to surgical incision. For the primary outcome, blinded observers will assess delirium on the day of surgery (postoperative day 0) and twice daily from postoperative days 1–3 using the Confusion Assessment Method or the Confusion Assessment Method for the ICU. For the secondary outcomes, blinded observers will estimate pain using the Behavioral Pain Scale or the Behavioral Pain Scale for Non-Intubated Patients and patient self-report. Ethics and dissemination The PODCAST trial has been approved by the ethics boards of five participating institutions; approval is ongoing at other sites. Recruitment began in February 2014 and will continue until the end of 2016. Dissemination plans include presentations at scientific conferences, scientific publications, stakeholder engagement and popular media. Registration details The study is registered at clinicaltrials.gov, NCT01690988 (last updated March 2014). The PODCAST trial is being conducted under the auspices of the Neurological Outcomes Network for Surgery (NEURONS). Trial registration number NCT01690988 (last updated December 2013)
De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2
We developed a de novo protein design strategy to swiftly engineer decoys for neutralizing pathogens that exploit extracellular host proteins to infect the cell. Our pipeline allowed the design, validation, and optimization of de novo hACE2 decoys to neutralize SARS-CoV-2. The best decoy, CTC-445.2, binds with low nanomolar affinity and high specificity to the RBD of the spike protein. Cryo-EM shows that the design is accurate and can simultaneously bind to all three RBDs of a single spike protein. Because the decoy replicates the spike protein target interface in hACE2, it is intrinsically resilient to viral mutational escape. A bivalent decoy, CTC-445.2d, shows ~10-fold improvement in binding. CTC-445.2d potently neutralizes SARS-CoV-2 infection of cells in vitro and a single intranasal prophylactic dose of decoy protected Syrian hamsters from a subsequent lethal SARS-CoV-2 challenge
Promoting optimal parenting and children’s mental health : a preliminary evaluation of the How-to Parenting Program
Parenting quality is widely accepted as a primary predictor of children’s mental health. The present study examined the effectiveness of a parenting program in fostering optimal parenting and child mental health. The selected program was How to talk so kids will listen & listen so kids will talk (How-to Parenting Program). This program was selected because its content corresponds closely to what the parenting style literature suggests is optimal parenting (i.e., includes structure, affiliation and autonomy support). Eleven groups of six to twelve parents were conducted in 7 local grade schools. The program, offered by two trained leaders, consisted of eight weekly sessions and taught a total of 30 skills. A total of 82 parents completed questionnaires both prior to and after the program. Participants’ children between eight and 12 years old (N = 44) completed questionnaires at school, at both assessment points. Repeated measures ANOVAs using parent reports indicated that structure, affiliation and autonomy support were increased after the program, compared to baseline. The level of child internalizing and externalizing problems also decreased significantly. Importantly, children reports confirmed that parental autonomy support increased from pre to post-test and child-reported well-being improved as well. The preliminary evidence from this pre-test versus post-test repeated measures design suggests that the How-to Parenting Program is effective in improving parenting style and in promoting children’s mental health and that future evaluation research examining the potential of this program is warranted
De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2
We developed a de novo protein design strategy to swiftly engineer decoys for neutralizing pathogens that exploit extracellular host proteins to infect the cell. Our pipeline allowed the design, validation, and optimization of de novo hACE2 decoys to neutralize SARS-CoV-2. The best decoy, CTC-445.2, binds with low nanomolar affinity and high specificity to the RBD of the spike protein. Cryo-EM shows that the design is accurate and can simultaneously bind to all three RBDs of a single spike protein. Because the decoy replicates the spike protein target interface in hACE2, it is intrinsically resilient to viral mutational escape. A bivalent decoy, CTC-445.2d, shows ~10-fold improvement in binding. CTC-445.2d potently neutralizes SARS-CoV-2 infection of cells in vitro and a single intranasal prophylactic dose of decoy protected Syrian hamsters from a subsequent lethal SARS-CoV-2 challenge
First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814
International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)
Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.
- …