96 research outputs found

    Spatial and temporal CO2 exchanges measured by Eddy Covariance over a temperate intertidal flat and their relationships to net ecosystem production

    Get PDF
    peer reviewedMeasurements of carbon dioxide fluxes were performed over a temperate intertidal mudflat in southwestern France using the micrometeorological Eddy Covariance (EC) technique. EC measurements were carried out in two contrasting sites of the Arcachon flat during four periods and in three different seasons (autumn 2007, summer 2008, autumn 2008 and spring 2009). In addition, satellite images of the tidal flat at low tide were used to link the net ecosystem CO2 exchange (NEE) with the occupation of the mudflat by primary producers, particularly by Zostera noltii meadows. CO2 fluxes during the four deployments showed important spatial and temporal variations, with the flat rapidly shifting from sink to source with the tide. Absolute CO2 fluxes showed generally small negative (influx) and positive (efflux) values, with larger values up to −13 μmol m−2 s−1 for influxes and 19 μmol m−2 s−1 for effluxes. Low tide during the day was mostly associated with a net uptake of atmospheric CO2. In contrast, during immersion and during low tide at night, CO2 fluxes where positive, negative or close to zero, depending on the season and the site. During the autumn of 2007, at the innermost station with a patchy Zostera noltii bed (cover of 22 ± 14% in the wind direction of measurements), CO2 influx was −1.7 ± 1.7 μmol m−2 s−1 at low tide during the day, and the efflux was 2.7 ± 3.7 μmol m−2 s−1 at low tide during the night. A gross primary production (GPP) of 4.4 ± 4.1 μmol m−2 s−1 during emersion could be attributed to microphytobenthic communities. During the summer and autumn of 2008, at the central station with a dense eelgrass bed (92 ± 10%), CO2 uptakes at low tide during the day were −1.5 ± 1.2 and −0.9 ± 1.7 μmol m−2 s−1, respectively. Night time effluxes of CO2 were 1.0 ± 0.9 and 0.2 ± 1.1 μmol m−2 s−1 in summer and autumn, respectively, resulting in a GPP during emersion of 2.5 ± 1.5 and 1.1 ± 2.0 μmol m−2 s−1, respectively, attributed primarily to the seagrass community. At the same station in April 2009, before Zostera noltii started to grow, the CO2 uptake at low tide during the day was the highest (−2.7 ± 2.0 μmol m−2 s−1). Influxes of CO2 were also observed during immersion at the central station in spring and early autumn and were apparently related to phytoplankton blooms occurring at the mouth of the flat, followed by the advection of CO2-depleted water with the flooding tide. Although winter data as well as water carbon measurements would be necessary to determine a precise CO2 budget for the flat, our results suggest that tidal flat ecosystems are a modest contributor to the CO2 budget of the coastal ocean

    Quantifying precision and accuracy of measurements of dissolved inorganic carbon stable isotopic composition using continuous-flow isotope-ratio mass spectrometry

    Get PDF
    RATIONALE: We describe an analytical procedure that allows sample collection and measurement of carbon isotopic composition (δ13CV-PDB value) and dissolved inorganic carbon concentration, [DIC], in aqueous samples without further manipulation post field collection. By comparing outputs from two different mass spectrometers, we quantify with the statistical rigour uncertainty associated with the estimation of an unknown measurement. This is rarely undertaken, but it is needed to understand the significance of field data and to interpret quality assurance exercises.<p></p> METHODS: Immediate acidification of field samples during collection in evacuated, pre-acidified vials removed the need for toxic chemicals to inhibit continued bacterial activity that might compromise isotopic and concentration measurements. Aqueous standards mimicked the sample matrix and avoided headspace fractionation corrections. Samples were analysed using continuous-flow isotope-ratio mass spectrometry, but for low DIC concentration the mass spectrometer response could be non-linear. This had to be corrected for.<p></p> RESULTS: Mass spectrometer non-linearity exists. Rather than estimating precision as the repeat analysis of an internal standard, we have adopted inverse linear calibrations to quantify the precision and 95% confidence intervals (CI) of the δ13CDIC values. The response for [DIC] estimation was always linear. For 0.05–0.5 mM DIC internal standards, however, changes in mass spectrometer linearity resulted in estimations of the precision in the δ13CVPDB value of an unknown ranging from ± 0.44‰ to ± 1.33‰ (mean values) and a mean 95% CI half-width of ±1.1–3.1‰.<p></p> CONCLUSIONS: Mass spectrometer non-linearity should be considered in estimating uncertainty in measurement. Similarly, statistically robust estimates of precision and accuracy should also be adopted. Such estimations do not inhibit research advances: our consideration of small-scale spatial variability at two points on a small order river system demonstrates field data ranges larger than the precision and uncertainties. However, without such statistical quantification, exercises such as inter-lab calibrations are less meaningful.<p></p&gt

    An assessment of the precision and confidence of aquatic eddy correlation measurements

    Get PDF
    The quantification of benthic fluxes with the aquatic eddy correlation (EC) technique is based on simultaneous measurement of the current velocity and a targeted bottom water parameter (e. g., O-2, temperature). High-frequency measurements (64Hz) are performed at a single point above the seafloor using an acoustic Doppler velocimeter (ADV) and a fast-responding sensor. The advantages of aquatic EC technique are that 1) it is noninvasive, 2) it integrates fluxes over a large area, and 3) it accounts for in situ hydrodynamics. The aquatic EC has gained acceptance as a powerful technique; however, an accurate assessment of the errors introduced by the spatial alignment of velocity and water constituent measurements and by their different response times is still needed. Here, this paper discusses uncertainties and biases in the data treatment based on oxygen EC flux measurements in a large-scale flume facility with well-constrained hydrodynamics. These observations are used to review data processing procedures and to recommend improved deployment methods, thus improving the precision, reliability, and confidence of EC measurements. Specifically, this study demonstrates that 1) the alignment of the time series based on maximum cross correlation improved the precision of EC flux estimations; 2) an oxygen sensor with a response time of <0.4 s facilitates accurate EC fluxes estimates in turbulence regimes corresponding to horizontal velocities <11 cm s(-1); and 3) the smallest possible distance (<1 cm) between the oxygen sensor and the ADV's sampling volume is important for accurate EC flux estimates, especially when the flow direction is perpendicular to the sensor's orientation

    The effect of crab burrows on soil-water dynamics in mangroves

    Get PDF
    Many mangrove ecosystem services, such as carbon sequestration, are closely linked to mangrove soil water content, which in turn is thought to depend on animal burrow density and the properties of the sediment in which the burrows are constructed. We measured the water content in the sediment matrix between crab burrows across 26 plots in a typical, fine-grained (clay), mangrove soil in the Mekong Delta, Vietnam. We found that the water content of the sediment matrix remained more or less constant throughout the tidal cycle, and was independent of burrow density. Our results suggest that there is little exchange of water between the burrows and the associated sediment matrix and that burrows act as an independent pipe network transporting water through the mangrove soil. To check and extend our findings, we used a numerical groundwater model to simulate an idealized burrow in a range of sediment types. The model results confirmed that fine-grained mangrove sediments do not drain readily into adjacent animal burrows because of their very low permeability. Our results have important implications for understanding and forecasting mangrove carbon dynamics with sea level rise

    Workshop on Assessing the Impact of Fishing on Oceanic Carbon (WKFISHCARBON; outputs from 2023 meeting)

    Get PDF
    Rapports Scientifiques du CIEM. Volume 6, nº 12The Workshop on Assessing the Impact of Fishing on Oceanic Carbon (WKFISHCARBON) was set up to provide ICES and stakeholders with a summary of knowledge on the role of fishing in the process of carbon budgets, sequestration and footprint in the ocean. The workshop addressed the potential impact of fishing on the biological carbon pump (BCP), the possible impacts of bottom trawling on carbon stores in the seabed, as well as considering emissions from fishing vessels. The overall aim was to generate proposals on how to develop an ICES approach to fishing and its role in the ocean carbon budget, and to develop a roadmap for a way forward. The main findings were that knowledge of the BCP in the open ocean was reasonably well developed, but that key gaps existed. In particular, information on the biomass of mesopelagic fish and other biota, and of some of the key processes e.g. fluxes and fish bioenergetics. Knowledge is much weaker for the BCP in shelf seas, where the bulk of fishing occurs. In particular, while biomass of fish was often well quantified, unlike the open ocean, the understanding of the important processes was lacking, particularly for the fate of faecal pellets and deadfall at the seabed. There is extensive scientific knowledge of the impact of fishing on the seabed, but what is un-clear is what it means for seabed carbon storage. There have been numbers of studies, which give a very divided view on this. There has also been open controversy about this in the literature. Physical disturbance to the seabed from fishing can affect sediment transport and has the potential to facilitate remineralization, but precise impacts will depend on habitat, fishing métier, and other environmental factors. From this, it is clear that more research is needed to resolve the controversy, and to quantify the impacts from different fishing gears and on different substrates or habitats in terms of carbon storage. There has been much more research on minimizing fuel use by fishing vessels, and hence emissions, but this has mainly focused on fuel efficiency, fuel use per unit of landed catch, and less on the total emissions. Baselines for fuel use are available at the global level, but are lacking at the national and vessel level. There is a need for standardization of methodologies and protocols, and for improving the uptake of fuel conservation measures by industry, as well as for improving the uptake of existing and potential fuel conservation and efficiency measures by industry. Finally, a roadmap was proposed to develop research and synthesis, on the understandings of the processes involved, the metrics and how to translate this into possible advice for policy-makers. To that end, a further workshop was proposed in 2024.info:eu-repo/semantics/publishedVersio

    Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world’s mountains

    Get PDF
    Inland waters, including streams and rivers, are active components of the global carbon cycle. Despite the large areal extent of the world’s mountains, the role of mountain streams for global carbon fluxes remains elusive. Using recent insights from gas exchange in turbulent streams, we found that areal CO2 evasion fluxes from mountain streams equal or exceed those reported from tropical and boreal streams, typically regarded as hotspots of aquatic carbon fluxes. At the regional scale of the Swiss Alps, we present evidence that emitted CO2 derives from lithogenic and biogenic sources within the catchment and delivered by the groundwater to the streams. At a global scale, we estimate the CO2 evasion from mountain streams to 167 ± 1.5 Tg C yr−1, which is high given their relatively low areal contribution to the global stream and river networks. Our findings shed new light on mountain streams for global carbon fluxes

    Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis

    Get PDF
    Extreme events such as heat waves have increased in frequency and duration over the last decades. Under future climate scenarios, these discrete climatic events are expected to become even more recurrent and severe. Heat waves are particularly important on rocky intertidal shores, one of the most thermally variable and stressful habitats on the planet. Intertidal mussels, such as the blue mussel Mytilus edulis, are ecosystem engineers of global ecological and economic importance, that occasionally suffer mass mortalities. This study investigates the potential causes and consequences of a mass mortality event of M. edulis that occurred along the French coast of the eastern English Channel in summer 2018. We used an integrative, climatological and ecophysiological methodology based on three complementary approaches. We first showed that the observed mass mortality (representing 49 to 59% of the annual commercial value of local recreational and professional fisheries combined) occurred under relatively moderate heat wave conditions. This result indicates that M. edulis body temperature is controlled by non-climatic heat sources instead of climatic heat sources, as previously reported for intertidal gastropods. Using biomimetic loggers (i.e. 'robomussels'), we identified four periods of 5 to 6 consecutive days when M. edulis body temperatures consistently reached more than 30 °C, and occasionally more than 35 °C and even more than 40 °C. We subsequently reproduced these body temperature patterns in the laboratory to infer M. edulis thermal tolerance under conditions of repeated heat stress. We found that thermal tolerance consistently decreased with the number of successive daily exposures. These results are discussed in the context of an era of global change where heat events are expected to increase in intensity and frequency, especially in the eastern English Channel where the low frequency of commercially exploitable mussels already questions both their ecological and commercial sustainability.Funding Agency French Ministere de l'Enseignement Superieur et de la Recherche Region Hauts-de-France European Funds for Regional Economical Development Pierre Hubert Curien PESSOA Felloswhip Fundacao para a Ciencia e Tecnologia (FCT-MEC, Portugal) IF/01413/2014/CP1217/CT0004 National Research Foundation - South Africa 64801 South African Research Chairs Initiative (SARChI) of the Department of Science and Technology National Research Foundation - South Africainfo:eu-repo/semantics/publishedVersio

    Latitude and lake size are important predictors of over-lake atmospheric stability: Atmospheric Stability Above Lakes

    Get PDF
    Turbulent fluxes across the air‐water interface are integral to determining lake heat budgets, evaporation, and carbon emissions from lakes. The stability of the atmospheric boundary layer (ABL) influences the exchange of turbulent energy. We explore the differences in over‐lake ABL stability using data from 39 globally distributed lakes. The frequency of unstable ABL conditions varied between lakes from 71 to 100% of the time, with average air temperatures typically several degrees below the average lake surface temperature. This difference increased with decreasing latitude, resulting in a more frequently unstable ABL and a more efficient energy transfer to and from the atmosphere, toward the tropics. In addition, during summer the frequency of unstable ABL conditions decreased with increasing lake surface area. The dependency of ABL stability on latitude and lake size has implications for heat loss and carbon fluxes from lakes, the hydrologic cycle, and climate change effects

    C mobilisation in disturbed tropical peat swamps: old DOC can fuel the fluvial efflux of old carbon dioxide, but site recovery can occur

    Get PDF
    Southeast-Asian peat swamp forests have been significantly logged and converted to plantation. Recently, to mitigate land degradation and C losses, some areas have been left to regenerate. Understanding how such complex land use change affects greenhouse gas emissions is essential for modelling climate feedbacks and supporting land management decisions. We carried out field research in a Malaysian swamp forest and an oil palm plantation to understand how clear-felling, drainage, and illegal and authorized conversion to oil palm impacted the C cycle, and how the C cycle may change if such logging and conversion stopped. We found that both the swamp forest and the plantation emit centuries-old CO2 from their drainage systems in the managed areas, releasing sequestered C to the atmosphere. Oil palm plantations are an iconic symbol of tropical peatland degradation, but CO2 efflux from the recently-burnt, cleared swamp forest was as old as from the oil palm plantation. However, in the swamp forest site, where logging had ceased approximately 30 years ago, the age of the CO2 efflux was modern, indicating recovery of the system can occur. 14C dating of the C pool acted as a tracer of recovery as well as degradation and offers a new tool to assess efficacy of restoration management. Methane was present in many sites, and in higher concentrations in slow-flowing anoxic systems as degassing mechanisms are not strong. Methane loading in freshwaters is rarely considered, but this may be an important C pool in restored drainage channels and should be considered in C budgets and losses

    Fluxes of water, sediments, and biogeochemical compounds in salt marshes

    Get PDF
    Tidal oscillations systematically flood salt marshes, transporting water, sediments, organic matter, and biogeochemical elements such as silica. Here we present a review of recent studies on these fluxes and their effects on both ecosystem functioning and morphological evolution of salt marshes. We reexamine a simplified model for the computation of water fluxes in salt marshes that captures the asymmetry in discharge between flood and ebb. We discuss the role of storm conditions on sediment fluxes both in tidal channels and on the marsh platform. We present recent methods and field instruments for the measurement of fluxes of organic matter. These methods will provide long-term data sets with fine temporal resolution that will help scientists to close the carbon budget in salt marshes. Finally, the main processes controlling fluxes of biogenic and dissolved silica in salt marshes are explained, with particular emphasis on the uptake by marsh macrophytes and diatoms
    corecore