84 research outputs found

    Hydrothermal sediments are a source of water column Fe and Mn in the Bransfield Strait, Antarctica

    Get PDF
    Short sediment cores were collected from ∼1100 m water depth at the top of Hook Ridge, a submarine volcanic edifice in the Central Basin of the Bransfield Strait, Antarctica, to assess Fe and Mn supply to the water column. Low-temperature hydrothermal fluids advect through these sediments and, in places, subsurface H2S is present at high enough concentrations to support abundant Sclerolinum sp., an infaunal tubeworm that hosts symbiotic thiotrophic bacteria. The water column is fully oxic, and oxygen penetration depths at all sites are 2–5 cmbsf. Pore water Fe and Mn content is high within the subsurface ferruginous zone (max. 565 μmol Fe L−1, >3–7 cmbsf)—14–18 times higher than values measured at a nearby, background site of equivalent water depth. Diffusion and advection of pore waters supply significant Fe and Mn to the surface sediment. Sequential extraction of the sediment demonstrates that there is a significant enrichment in a suite of reactive, authigenic Fe minerals in the upper 0–5 cm of sediment at one site characterised by weathered crusts at the seafloor. At a site with only minor authigenic mineral surface enrichment we infer that leakage of pore water Fe and Mn from the sediment leads to enriched total dissolvable Fe and Mn in bottom waters. An Eh sensor mounted on a towed package mapped a distinct Eh signature above this coring site which is dispersed over several km at the depth of Hook Ridge. We hypothesise that the main mechanism for Fe and Mn efflux from the sediment is breach of the surface oxic layer by the abundant Sclerolinum sp., along with episodic enhancements by physical mixing and resuspension of sediment in this dynamic volcanic environment. We propose that Hook Ridge sediments are an important source of Fe and Mn to the deep waters of the Central Basin in the Bransfield Strait, where concentrations are sustained by the benthic flux, and Fe is stabilised in the water column as either colloidal phases or ligand-bound dissolved species. Entrainment of this water mass into the Drake Passage and thereby the Antarctic Circumpolar Current could provide a significant metal source to this HNLC region of the Southern Ocean if mixing and upwelling occurs before removal of this metal pool to underlying sediments. Sediment-covered volcanic ridges are common within rifted margins and may play a previously overlooked role in the global Fe cycle

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2—Implications for their role in disease, especially cancer

    Full text link

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore