466 research outputs found

    Implosion-driven shock tube

    Get PDF
    Detonation wave striking PETN explosive shell producing implosion or implosion wave in shock tub

    Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites

    Get PDF
    Thermochemical properties have been either measured or estimated for synthetic monazite, LaPO4, and dissakisite, CaLaMgAl2(SiO4)3OH, the Mg-equivalent of allanite. A dissakisite formation enthalpy of −6,976.5±10.0kJmol−1 was derived from high-temperature drop-solution measurements in lead borate at 975K. A third-law entropy value of 104.9±1.6Jmol−1K−1 was retrieved from low-temperature heat capacity (C p) measured on synthetic LaPO4 with an adiabatic calorimeter in the 30-300K range. The C p values of lanthanum phases were measured in the 143-723K range by differential scanning calorimetry. In this study, La(OH)3 appeared as suitable for drop solution in lead borate and represents an attractive alternative to La2O3. Pseudo-sections were calculated with the THERIAK-DOMINO software using the thermochemical data retrieved here for a simplified metapelitic composition (La=∑REE+Y) and considering monazite and Fe-free epidotes along the dissakisite-clinozoïsite join, as the only REE-bearing minerals. Calculation shows a stability window for dissakisite-clinozoïsite epidotes (T between 250 and 550°C and P between 1 and 16kbar), included in a wide monazite field. The P-T extension of this stability window depends on the bulk-rock Ca-content. Assuming that synthetic LaPO4 and dissakisite-(La) are good analogues of natural monazite and allanite, these results are consistent with the REE-mineralogy sequence observed in metapelites, where (1) monazite is found to be stable below 250°C, (2) around 250-450°C, depending on the pressure, allanite forms at the expense of monazite and (3) towards amphibolite conditions, monazite reappears at the expense of allanit

    The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity

    Get PDF
    Chitin, a major component of fungal cell walls, is a well-known pathogen-associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM-RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM-RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin-induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1-1, -2, or -3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1-1 and VvLYK1-2, but not VvLYK1-3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide-induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1-1 in Atcerk1 restored penetration resistance to the non-adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1-1 and VvLYK1-2 participate in chitin- and chitosan-triggered immunity and that VvLYK1-1 plays an important role in basal resistance against E. necator

    Early signaling events induced by elicitors of plant defenses.

    Get PDF
    Plant pathogen attacks are perceived through pathogen-issued compounds or plant-derived molecules that elicit defense reactions. Despite the large variety of elicitors, general schemes for cellular elicitor signaling leading to plant resistance can be drawn. In this article, we review early signaling events that happen after elicitor perception, including reversible protein phosphorylations, changes in the activities of plasma membrane proteins, variations in free calcium concentrations in cytosol and nucleus, and production of nitric oxide and active oxygen species. These events occur within the first minutes to a few hours after elicitor perception. One specific elicitor transduction pathway can use a combination or a partial combination of such events which can differ in kinetics and intensity depending on the stimulus. The links between the signaling events allow amplification of the signal transduction and ensure specificity to get appropriate plant defense reactions. This review first describes the early events induced by cryptogein, an elicitor of tobacco defense reactions, in order to give a general scheme for signal transduction that will be use as a thread to review signaling events monitored in different elicitor or plant models

    Microscale analysis of metal uptake by argillaceous rocks using positive matrix factorization of microscopic X-ray fluorescence elemental maps

    Get PDF
    Argillaceous rocks are considered in most European countries as suitable host rock formations for the deep geological disposal of high-level radioactive waste (HLW). The most important chemical characteristic in this respect is their generally strong radionuclide retention property due to the high sorption capacity. Consequently, the physico-chemical parameters of these processes have to be studied in great detail. Synchrotron radiation microscopic X-ray fluorescence (SR µ-XRF) has sufficient sensitivity to study these processes on the microscale without the necessity of the application of radioactive substances. The present study focuses on the interaction between the escaped ions and the host-rock surrounding the planned HLW repository. SR µ-XRF measurements were performed on thin sections subjected to sorption experiments using 5 µm spatial resolution. Inactive Cs(I), Ni(II), Nd(III) and natural U(VI) were selected for the experiments chemically representing key radionuclides. The thin sections were prepared on high-purity silicon wafers from geochemically characterized cores of Boda Claystone Formation, Hungary. Samples were subjected to 72-hour sorption experiments with one ion of interest added. The µ-XRF elemental maps taken usually on several thousand pixels indicate a correlation of Cs and Ni with Fe- and K-rich regions suggesting that these elements are predominantly taken up by clay-rich phases. U and Nd was found to be bound not only to the clayey matrix, but the cavity filling minerals also played important role in the uptake. Multivariate methods were found to be efficient tools for extracting information from the elemental distribution maps even when the clayey matrix and fracture infilling regions were examined in the same measured area. By using positive matrix factorization as a new approach the factors with higher sorption capacity could be identified and with additional mineralogical information the uptake capacity of the different mineral phases could be quantified. The results were compared with cluster analysis when the regions dominated by different mineral phases are segmented. The multivariate approach based on µ-XRF to identify the minerals was validated using microscopic X-ray diffraction

    Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays

    Get PDF
    Increasing interest is devoted to carbohydrates for their roles in plant immunity. Some of them are elicitors of plant defenses whereas other ones act as signaling molecules in a manner similar to phytohormones. This review first describes the main classes of carbohydrates associated to plant immunity, their role and mode of action. More precisely, the state of the art about perception of “PAMP, MAMP and DAMP type” oligosaccharides is presented and examples of induced defense events are provided. A particular attention is paid to the structure / activity relationships of these compounds. The role of sugars as signaling molecules, especially in plant microbe interactions, is also presented. Secondly, the potentialities and limits of foliar sprays of carbohydrates to stimulate plant immunity for crop protection against diseases are discussed, with focus on the roles of the leaf cuticle and phyllosphere microflora.Peer reviewe

    Caesium incorporation and retention in illite interlayers

    Get PDF
    Radioactive caesium (chiefly 137Cs) is a major environmental pollutant. The mobility of Cs in temperate soils is primarily controlled by sorption onto clay minerals, particularly the frayed edges of illite interlayers. This paper investigates the adsorption of Cs to illite at the molecular scale, over both the short and long term. Transmission electron microscopy (TEM) images showed that after initial absorption into the frayed edges, Cs migrated into the illite interlayer becoming incorporated within the mineral structure. Caesium initially exchanged with hydrated Ca at the frayed edges, causing them to collapse. This process was irreversible as Cs held in the collapsed interlayers was not exchangeable with Ca. Over the long term Cs did not remain at the edge of the illite crystals, but diffused into the interlayers by exchange with K. Results from extended X-ray absorption fine structure spectroscopy (EXAFS) and density functional theory modelling confirmed that Cs was incorporated into the illite interlayer and revealed its bonding environment

    The Cult Statues of the Pantheon

    Get PDF
    This article reconsiders the possible statuary of the Pantheon in Rome, both in its original Augustan form and in its later phases. It argues that the so-called ‘Algiers Relief’ has wrongly been connected with the Temple of Mars Ultor and is in fact evidence of the association of the Divus Julius with Mars and Venus in the Pantheon of Agrippa, a juxtaposition which reflects the direction of Augustan ideology in the 20s b.c. and the building's celestial purpose. This triple statue group became the focus of the later Pantheon, and its importance is highlighted by the hierarchized system of architectural ornament of the present building
    corecore