research

Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites

Abstract

Thermochemical properties have been either measured or estimated for synthetic monazite, LaPO4, and dissakisite, CaLaMgAl2(SiO4)3OH, the Mg-equivalent of allanite. A dissakisite formation enthalpy of −6,976.5±10.0kJmol−1 was derived from high-temperature drop-solution measurements in lead borate at 975K. A third-law entropy value of 104.9±1.6Jmol−1K−1 was retrieved from low-temperature heat capacity (C p) measured on synthetic LaPO4 with an adiabatic calorimeter in the 30-300K range. The C p values of lanthanum phases were measured in the 143-723K range by differential scanning calorimetry. In this study, La(OH)3 appeared as suitable for drop solution in lead borate and represents an attractive alternative to La2O3. Pseudo-sections were calculated with the THERIAK-DOMINO software using the thermochemical data retrieved here for a simplified metapelitic composition (La=∑REE+Y) and considering monazite and Fe-free epidotes along the dissakisite-clinozoïsite join, as the only REE-bearing minerals. Calculation shows a stability window for dissakisite-clinozoïsite epidotes (T between 250 and 550°C and P between 1 and 16kbar), included in a wide monazite field. The P-T extension of this stability window depends on the bulk-rock Ca-content. Assuming that synthetic LaPO4 and dissakisite-(La) are good analogues of natural monazite and allanite, these results are consistent with the REE-mineralogy sequence observed in metapelites, where (1) monazite is found to be stable below 250°C, (2) around 250-450°C, depending on the pressure, allanite forms at the expense of monazite and (3) towards amphibolite conditions, monazite reappears at the expense of allanit

    Similar works