54 research outputs found

    Characterization of foreground emission on degree angular scales for CMB B-mode observations: Thermal dust and synchrotron signal from Planck and WMAP data

    Get PDF
    We quantify the contamination from polarized diffuse Galactic synchrotron and thermal dust emissions to the B modes of the cosmic microwave background (CMB) anisotropies on the degree angular scale, using data from the Planck and Wilkinson Microwave Anisotropy Probe (WMAP) satellites. We compute power spectra of foreground polarized emissions in 352 circular sky patches located at Galactic latitude | b | > 20\ub0, each of which covers about 1.5% of the sky. We make use of the spectral properties derived from Planck and WMAP data to extrapolate, in frequency, the amplitude of synchrotron and thermal dust B-mode spectra in the multipole bin centered at \u2113 43 80. In this way we estimate the amplitude and frequency of the foreground minimum for each analyzed region. We detect both dust and synchrotron signal on degree angular scales and at a 3\u3c3 confidence level in 28 regions. Here the minimum of the foreground emission is found at frequencies between 60 and 100 GHz with an amplitude expressed in terms of the equivalent tensor-to-scalar ratio, rFG,min, between 3c0.06 and 3c1. Some of these regions are located at high Galactic latitudes in areas close to the ones that are being observed by suborbital experiments. In all the other sky patches where synchrotron or dust B modes are not detectable with the required confidence, we put upper limits on the minimum foreground contamination and find values of rFG,min between 3c0.05 and 3c1.5 in the frequency range 60-90 GHz. Our results indicate that, with the current sensitivity at low frequency, it is not possible to exclude the presence of synchrotron contamination to CMB cosmological B modes at the level requested to measure a gravitational waves signal with r 43 0.01 at frequency 72 100 GHz anywhere. Therefore, more accurate data are essential in order to better characterize the synchrotron polarized component and, eventually, to remove its contamination to CMB signal through foreground cleaning. \ua9 2016 ESO

    Planck 2013 results. XXXI. Consistency of the Planck data

    Get PDF
    The Planck design and scanning strategy provide many levels of redundancy that can be exploited to provide tests of internal consistency. One of the most important is the comparison of the 70 GHz (amplifier) and 100 GHz (bolometer) channels. Based on different instrument technologies, with feeds located differently in the focal plane, analysed independently by different teams using different software, and near the minimum of diffuse foreground emission, these channels are in effect two different experiments. The 143 GHz channel has the lowest noise level on Planck, and is near the minimum of unresolved foreground emission. In this paper, we analyse the level of consistency achieved in the 2013 Planck data. We concentrate on comparisons between the 70, 100, and 143 GHz channel maps and power spectra, particularly over the angular scales of the first and second acoustic peaks, on maps masked for diffuse Galactic emission and for strong unresolved sources. Difference maps covering angular scales from 8 to 15' are consistent with noise, and show no evidence of cosmic microwave background structure. Including small but important corrections for unresolved-source residuals, we demonstrate agreement (measured by deviation of the ratio from unity) between 70 and 100 GHz power spectra averaged over 70 64 l 64390 at the 0.8% level, and agreement between 143 and 100 GHz power spectra of 0.4% over the same l range. These values are within and consistent with the overall uncertainties in calibration given in the Planck 2013 results. We also present results based on the 2013 likelihood analysis showing consistency at the 0.35% between the 100, 143, and 217 GHz power spectra. We analyse calibration procedures and beams to determine what fraction of these differences can be accounted for by known approximations or systematicerrors that could be controlled even better in the future, reducing uncertainties still further. Several possible small improvements are described. Subsequent analysis of the beams quantifies the importance of asymmetry in the near sidelobes, which was not fully accounted for initially, affecting the 70/100 ratio. Correcting for this, the 70, 100, and 143 GHz power spectra agree to 0.4% over the first two acoustic peaks. The likelihood analysis that produced the 2013 cosmological parameters incorporated uncertainties larger than this. We show explicitly that correction of the missing near sidelobe power in the HFI channels would result in shifts in the posterior distributions of parameters of less than 0.3\u3c3 except for As, the amplitude of the primordial curvature perturbations at 0.05 Mpc-1, which changes by about 1\u3c3. We extend these comparisons to include the sky maps from the complete nine-year mission of the Wilkinson Microwave Anisotropy Probe (WMAP), and find a roughly 2% difference between the Planck and WMAP power spectra in the region of the first acoustic peak. \ua9 ESO, 2014

    Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    Get PDF
    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude H\u3b1 emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (\ue2\u2030 30%) of H\u3b1 having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I\u3bd) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l >-90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the "Fermi bubble/microwave haze", making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in H\u3b1 at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2\u3c3 upper limit of 1.6% in the Perseus region

    Planck 2013 results X. Energetic particle effects: characterization, removal, and simulation

    Get PDF
    This paper presents the detection, interpretation and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). These interactions fall into two categories, heating the 0.1 K bolometer plate and glitches in each detector time stream. Glitch shapes are not simple single pole exponential decays and fall into a three families. The glitch shape for each family has been characterized empirically in flight data and removed from the detector time streams. The spectrum of the count rate/unit energy is computed for each family and a correspondence to where on the detector the particle hit is made. Most of the detected glitches are from galactic protons incident on the Si die frame supporting the micromachined bolometric detectors. At HFI, the particle flux is ~ 5 per square cm and per second and is dominated by protons incident on the spacecraft with an energy >39 MeV, leading to a rate of typically one event per second and per detector. Different categories of glitches have different signature in timestreams. Two of the glitch types have a low amplitude component that decays over nearly 1 second. This component produces an excess noise if not properly removed from the time ordered data. We have used a glitch detection and subtraction method based on the joint fit of population templates. The application of this novel glitch removal method removes excess noise from glitches. Using realistic simulations, we find this method does not introduce signal bias.Comment: 23 pages; v2: author list complete

    Planck 2013 results. III. LFI systematic uncertainties

    Get PDF
    We present the current estimate of instrumental and systematic effect uncertainties for the Planck-Low Frequency Instrument relevant to the first release of the Planck cosmological results. We give an overview of the main effects and of the tools and methods applied to assess residuals in maps and power spectra. We also present an overall budget of known systematic effect uncertainties, which are dominated sidelobe straylight pick-up and imperfect calibration. However, even these two effects are at least two orders of magnitude weaker than the cosmic microwave background (CMB) fluctuations as measured in terms of the angular temperature power spectrum. A residual signal above the noise level is present in the multipole range <20\ell<20, most notably at 30 GHz, and is likely caused by residual Galactic straylight contamination. Current analysis aims to further reduce the level of spurious signals in the data and to improve the systematic effects modelling, in particular with respect to straylight and calibration uncertainties.Comment: Accepted for publication by A&

    Planck 2015 results. XX. Constraints on inflation

    Get PDF
    We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be n s = 0.968 ± 0.006 and tightly constrain its scale dependence to dn s /dlnk = −0.003 ± 0.007 when combined with the Planck lensing likelihood. When the high-ℓ polarization data is included, the results are consistent and uncertainties are reduced. The upper bound on the tensor-to-scalar ratio is r 0.002 <0.11 (95% CL), consistent with the B-mode polarization constraint r<0.12 (95% CL) obtained from a joint BICEP2/Keck Array and Planck analysis. These results imply that V(ϕ)∝ϕ 2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R 2 inflation. Three independent methods reconstructing the primordial power spectrum are investigated. The Planck data are consistent with adiabatic primordial perturbations. We investigate inflationary models producing an anisotropic modulation of the primordial curvature power spectrum as well as generalized models of inflation not governed by a scalar field with a canonical kinetic term. The 2015 results are consistent with the 2013 analysis based on the nominal mission data

    Planck 2013 results. VI. High Frequency Instrument data processing

    Get PDF
    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 &lt; l &lt;2500), are intercalibrated at better than 0.2 %

    Planck 2013 results. XI. All-sky model of thermal dust emission

    Get PDF
    This paper presents an all-sky model of dust emission from the Planck 353, 545, and 857 GHz, and IRAS 100 \u3bcm data. Using a modified blackbody fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a good representation of the IRAS and Planck data at 5\u2032 between 353 and 3000 GHz (850 and 100 \u3bcm). It shows variations of the order of 30% compared with the widely-used model of Finkbeiner, Davis, and Schlegel. The Planck data allow us to estimate the dust temperature uniformly over the whole sky, down to an angular resolution of 5\u2032, providing an improved estimate of the dust optical depth compared to previous all-sky dust model, especially in high-contrast molecular regions where the dust temperature varies strongly at small scales in response to dust evolution, extinction, and/or local production of heating photons. An increase of the dust opacity at 353 GHz, \u3c4353/NH, from the diffuse to the denser interstellar medium (ISM) is reported. It is associated with a decrease in the observed dust temperature, Tobs, that could be due at least in part to the increased dust opacity. We also report an excess of dust emission at H i column densities lower than 1020 cm-2 that could be the signature of dust in the warm ionized medium. In the diffuse ISM at high Galactic latitude, we report an anticorrelation between \u3c4353/NH and Tobs while the dust specific luminosity, i.e., the total dust emission integrated over frequency (the radiance) per hydrogen atom, stays about constant, confirming one of the Planck Early Results obtained on selected fields. This effect is compatible with the view that, in the diffuse ISM, Tobs responds to spatial variations of the dust opacity, due to variations of dust properties, in addition to (small) variations of the radiation field strength. The implication is that in the diffuse high-latitude ISM \u3c4353 is not as reliable a tracer of dust column density as we conclude it is in molecular clouds where the correlation of \u3c4353 with dust extinction estimated using colour excess measurements on stars is strong. To estimate Galactic E(B-V) in extragalactic fields at high latitude we develop a new method based on the thermal dust radiance, instead of the dust optical depth, calibrated to E(B-V) using reddening measurements of quasars deduced from Sloan Digital Sky Survey data. \ua9 2014 ESO

    Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts

    Get PDF
    We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev--Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass MM and SZ signal YY calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude σ8\sigma_8 and matter density parameter Ωm\Omega_{\mathrm{m}} in a flat Λ\LambdaCDM model. We test the robustness of our estimates and find that possible biases in the YY--MM relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that σ8=0.75±0.03\sigma_8=0.75\pm 0.03, Ωm=0.29±0.02\Omega_{\mathrm{m}}=0.29\pm 0.02, and σ8(Ωm/0.27)0.3=0.764±0.025\sigma_8(\Omega_{\mathrm{m}}/0.27)^{0.3} = 0.764 \pm 0.025. The value of σ8\sigma_8 is degenerate with the mass bias; if the latter is fixed to a value of 20% we find σ8(Ωm/0.27)0.3=0.78±0.01\sigma_8(\Omega_{\mathrm{m}}/0.27)^{0.3}=0.78\pm 0.01 and a tighter one-dimensional range σ8=0.77±0.02\sigma_8=0.77\pm 0.02. We find that the larger values of σ8\sigma_8 and Ωm\Omega_{\mathrm{m}} preferred by Planck's measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the Λ\LambdaCDM model, such as a component of massive neutrinos (abridged).Comment: 20 pages, accepted for publication by A&
    corecore