38 research outputs found

    Winds in Collision: high-energy particles in massive binary systems

    Full text link
    High-resolution radio observations have revealed that non-thermal radio emission in WR stars arises where the stellar wind of the WR star collides with that of a binary companion. These colliding-wind binary (CWB) systems offer an important laboratory for investigating the underlying physics of particle acceleration. Hydrodynamic models of the binary stellar winds and the wind-collision region (WCR) that account for the evolution of the electron energy spectrum, largely due to inverse Compton cooling, are now available. Radiometry and imaging obtained with the VLA, MERLIN, EVN and VLBA provide essential constraints to these models. Models of the radio emission from WR146 and WR147 are shown, though these very wide systems do not have defined orbits and hence lack a number of important model parameters. Multi-epoch VLBI imaging of the archetype WR+O star binary WR140 through a part of its 7.9-year orbit has been used to define the orbit inclination, distance and the luminosity of the companion star to enable the best constraints for any radio emitting CWB system. Models of the spatial distribution of relativistic electrons and ions, and the magnetic energy density are used to model the radio emission, and also to predict the high energy emission at X-ray and gamma-ray energies. It is clear that high-energy facilities e.g. GLAST and VERITAS, will be important for constraining particle acceleration parameters such as the spectral index of the energy spectrum and the acceleration efficiency of both ions and electrons, and in turn, identify unique models for the radio spectra. This will be especially important in future attempts to model the spectra of WR140 throughout its complete orbit. A WCR origin for the synchrotron emission in O-stars, the progenitors of WR stars, is illustrated by observations of Cyg OB2 No. 9.Comment: Invited review at the 8th EVN Symposium, Torun September 26-29, 2006. 11 pages, 12 figure

    Theoretical X-ray Line Profiles from Colliding Wind Binaries

    Full text link
    We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_\infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_\infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E <~ 1 kev) are particularly affected. This generally results in blueward-skewed profiles, especially when the system is viewed through the dense wind of the primary. The orbital variation of the line widths and shifts is reduced in a low inclination binary. The extreme case is a binary with i = 0 degrees, for which we would expect no line profile variation.Comment: 15 pages, 15 figures. To appear in MNRA

    Non-thermal processes in colliding-wind massive binaries: the contribution of Simbol-X to a multiwavelength investigation

    Get PDF
    Several colliding-wind massive binaries are known to be non-thermal emitters in the radio domain. This constitutes strong evidence for the fact that an efficient particle acceleration process is at work in these objects. The acceleration mechanism is most probably the Diffusive Shock Acceleration (DSA) process in the presence of strong hydrodynamic shocks due to the colliding-winds. In order to investigate the physics of this particle acceleration, we initiated a multiwavelength campaign covering a large part of the electromagnetic spectrum. In this context, the detailed study of the hard X-ray emission from these sources in the SIMBOL-X bandpass constitutes a crucial element in order to probe this still poorly known topic of astrophysics. It should be noted that colliding-wind massive binaries should be considered as very valuable targets for the investigation of particle acceleration in a similar way as supernova remnants, but in a different region of the parameter space.Comment: 4 pages, 2 figures, to appear in Proc. of the Second Internqtionql Simbol-X Symposium, held in Paris (France

    Cold gas in the Intra Cluster Medium: implications for flow dynamics and powering optical nebulae

    Full text link
    We show that the mechanical energy injection rate generated as the intra-cluster medium (ICM) flows around cold clouds may be sufficient to power the optical and near infra-red emission of nebulae observed in the central regions of a sample of seven galaxy clusters. The energy injection rate is extremely sensitive to the velocity difference between the ICM and cold clouds, which may help to explain why optical and infra-red luminosity is often larger than expected in systems containing AGNs. We also find that mass recycling is likely to be important for the dynamics of the ICM. This effect will be strongest in the central regions of clusters where there is more than enough cold gas for its evaporation to contribute significantly to the density of the hot phase.Comment: 8 pages, 2 figures, accepted for publication in MNRA

    X-ray Spectral Variation of Eta Carinae through the 2003 X-ray Minimum

    Get PDF
    We report the results of an X-ray observing campaign on the massive, evolved star Eta Carinae, concentrating on the 2003 X-ray minimum as seen by the XMM-Newton observatory. These are the first spatially-resolved X-ray monitoring observations of the stellar X-ray spectrum during the minimum. The hard X-ray emission, believed to be associated with the collision of Eta Carinae's wind with the wind from a massive companion star, varied strongly in flux on timescales of days, but not significantly on timescales of hours. The lowest X-ray flux in the 2-10 keV band seen by XMM-Newton was only 0.7% of the maximum seen by RXTE just before the X-ray minimum. The slope of the X-ray continuum above 5 keV did not vary in any observation, which suggests that the electron temperature of the hottest plasma associated with the stellar source did not vary significantly at any phase. Through the minimum, the absorption to the stellar source increased by a factor of 5-10 to NH ~3-4E23 cm-2. The thermal Fe XXV emission line showed significant excesses on both the red and blue sides of the line outside the minimum and exhibited an extreme red excess during the minimum. The Fe fluorescence line at 6.4 keV increased in equivalent width from 100 eV outside the minimum to 200 eV during the minimum. From these observed features, we discuss two possible causes of the X-ray minimum; the eclipse of the X-ray plasma and an intrinsic fading of the X-ray emissivity. The drop in the colliding wind X-ray emission also revealed the presence of an additional X-ray component which exhibited no variation on timescales of weeks to years. This component may be produced by the collision of high speed outflows at v \~1000-2000 km s-1 from Eta Carinae with ambient gas within a few thousand AU from the star.Comment: 35 pages, 14 figures, accepted for publication in Ap

    Suzaku monitoring of hard X-ray emission from η carinae over a single binary orbital cycle

    Get PDF
    The Suzaku X-ray observatory monitored the supermassive binary system η Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ∼ 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ∼3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the γ-ray source detected in this field. The helium-like Fe Kα line complex at ∼6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with τ ∼ 1011 cm-3 s-1. The NEI plasma increases in importance toward periastron

    Coordinated Monitoring of the Eccentric O-star Binary Iota Orionis: The X-ray Analysis

    Get PDF
    We analyse two ASCA observations of the highly eccentric O9III + B1III binary Iota Orionis obtained at periastron and apastron. Based on the assumption of a strong colliding winds shock between the stellar components, we expected to see significant variation in the X-ray emission between these phases. The observations proved otherwise: the X-ray luminosities and spectral distributions were remarkably similar. The only noteworthy feature was the hint of a proximity effect during periastron passage, supported also in the optical. We discuss the accuracy of our results, and also analyse archival ROSAT observations. We investigate why we do not see a clear colliding winds signature. A simple model shows that the wind attenuation to the expected position of the shock apex is negligible throughout the orbit, which poses the puzzling question of why the expected 1/D variation (ie. a factor of 7.5) in the intrinsic luminosity is not seen in the data. Two scenarios are proposed: either the colliding winds emission is unexpectedly weak such that intrinsic shocks in the winds dominate the emission, or, alternatively, that the emission observed is colliding winds emission but in a more complex form than we would naively expect. Complex hydrodynamical models are then analyzed. Despite strongly phase-variable emission from the models, both were consistent with the observations. We find that if the mass-loss rates of the stars are low then intrinsic wind shocks could dominate the emission. However, when we assume higher mass-loss rates of the stars, we find that the observed emission could also be consistent with a purely colliding winds origin. To distinguish between the different models X-ray observations with improved phase coverage will be necessary.Comment: 18 pages, 14 figures, uses mn.st

    An Introduction to the Chandra Carina Complex Project

    Get PDF
    The Great Nebula in Carina provides an exceptional view into the violent massive star formation and feedback that typifies giant HII regions and starburst galaxies. We have mapped the Carina star-forming complex in X-rays, using archival Chandra data and a mosaic of 20 new 60ks pointings using the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer, as a testbed for understanding recent and ongoing star formation and to probe Carina's regions of bright diffuse X-ray emission. This study has yielded a catalog of properties of >14,000 X-ray point sources; >9800 of them have multiwavelength counterparts. Using Chandra's unsurpassed X-ray spatial resolution, we have separated these point sources from the extensive, spatially-complex diffuse emission that pervades the region; X-ray properties of this diffuse emission suggest that it traces feedback from Carina's massive stars. In this introductory paper, we motivate the survey design, describe the Chandra observations, and present some simple results, providing a foundation for the 15 papers that follow in this Special Issue and that present detailed catalogs, methods, and science results.Comment: Accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at least. 43 pages; 18 figure
    corecore