555 research outputs found

    Disparate oxidant gene expression of airway epithelium compared to alveolar macrophages in smokers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The small airway epithelium and alveolar macrophages are exposed to oxidants in cigarette smoke leading to epithelial dysfunction and macrophage activation. In this context, we asked: what is the transcriptome of oxidant-related genes in small airway epithelium and alveolar macrophages, and does their response differ substantially to inhaled cigarette smoke?</p> <p>Methods</p> <p>Using microarray analysis, with TaqMan RT-PCR confirmation, we assessed oxidant-related gene expression in small airway epithelium and alveolar macrophages from the same healthy nonsmoker and smoker individuals.</p> <p>Results</p> <p>Of 155 genes surveyed, 87 (56%) were expressed in both cell populations in nonsmokers, with higher expression in alveolar macrophages (43%) compared to airway epithelium (24%). In smokers, there were 15 genes (10%) up-regulated and 7 genes (5%) down-regulated in airway epithelium, but only 3 (2%) up-regulated and 2 (1%) down-regulated in alveolar macrophages. Pathway analysis of airway epithelium showed oxidant pathways dominated, but in alveolar macrophages immune pathways dominated.</p> <p>Conclusion</p> <p>Thus, the response of different cell-types with an identical genome exposed to the same stress of smoking is different; responses of alveolar macrophages are more subdued than those of airway epithelium. These findings are consistent with the observation that, while the small airway epithelium is vulnerable, alveolar macrophages are not "diseased" in response to smoking.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov ID: NCT00224185 and NCT00224198</p

    Estimates of live-tree carbon stores in the Pacific Northwest are sensitive to model selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimates of live-tree carbon stores are influenced by numerous uncertainties. One of them is model-selection uncertainty: one has to choose among multiple empirical equations and conversion factors that can be plausibly justified as locally applicable to calculate the carbon store from inventory measurements such as tree height and diameter at breast height (DBH). Here we quantify the model-selection uncertainty for the five most numerous tree species in six counties of northwest Oregon, USA.</p> <p>Results</p> <p>The results of our study demonstrate that model-selection error may introduce 20 to 40% uncertainty into a live-tree carbon estimate, possibly making this form of error the largest source of uncertainty in estimation of live-tree carbon stores. The effect of model selection could be even greater if models are applied beyond the height and DBH ranges for which they were developed.</p> <p>Conclusions</p> <p>Model-selection uncertainty is potentially large enough that it could limit the ability to track forest carbon with the precision and accuracy required by carbon accounting protocols. Without local validation based on detailed measurements of usually destructively sampled trees, it is very difficult to choose the best model when there are several available. Our analysis suggests that considering tree form in equation selection may better match trees to existing equations and that substantial gaps exist, in terms of both species and diameter ranges, that are ripe for new model-building effort.</p

    Pseudomonas aeruginosa Population Structure Revisited

    Get PDF
    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P. aeruginosa “core lineage” and typically exhibited the exoS+/exoU− genotype and group B oprL and oprD alleles. This is to our knowledge the first report of an MST analysis conducted on a polyphasic data set

    A β-Lactam Antibiotic Dampens Excitotoxic Inflammatory CNS Damage in a Mouse Model of Multiple Sclerosis

    Get PDF
    In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial “Excitatory Amino Acid Transporters” (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a β-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in “Myelin Oligodendrocyte Glycoprotein” (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFγ and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a β-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis

    Phthiocerol Dimycocerosates of M. tuberculosis Participate in Macrophage Invasion by Inducing Changes in the Organization of Plasma Membrane Lipids

    Get PDF
    Phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), in particular during the early step of infection when bacilli encounter their host macrophages. However, their cellular and molecular mechanisms of action remain unknown. Using Mtb mutants deleted for genes involved in DIM biosynthesis, we demonstrated that DIM participate both in the receptor-dependent phagocytosis of Mtb and the prevention of phagosomal acidification. The effects of DIM required a state of the membrane fluidity as demonstrated by experiments conducted with cholesterol-depleting drugs that abolished the differences in phagocytosis efficiency and phagosome acidification observed between wild-type and mutant strains. The insertion of a new cholesterol-pyrene probe in living cells demonstrated that the polarity of the membrane hydrophobic core changed upon contact with Mtb whereas the lateral diffusion of cholesterol was unaffected. This effect was dependent on DIM and was consistent with the effect observed following DIM insertion in model membrane. Therefore, we propose that DIM control the invasion of macrophages by Mtb by targeting lipid organisation in the host membrane, thereby modifying its biophysical properties. The DIM-induced changes in lipid ordering favour the efficiency of receptor-mediated phagocytosis of Mtb and contribute to the control of phagosomal pH driving bacilli in a protective niche

    Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis

    Get PDF
    Background: The effects of pharmacological blood pressure lowering at normal or high-normal blood pressure ranges in people with or without pre-existing cardiovascular disease remains uncertain. We analysed individual participant data from randomised trials to investigate the effects of blood pressure lowering treatment on the risk of major cardiovascular events by baseline levels of systolic blood pressure. Methods: We did a meta-analysis of individual participant-level data from 48 randomised trials of pharmacological blood pressure lowering medications versus placebo or other classes of blood pressure-lowering medications, or between more versus less intensive treatment regimens, which had at least 1000 persons-years of follow-up in each group. Trials exclusively done with participants with heart failure or short-term interventions in participants with acute myocardial infarction or other acute settings were excluded. Data from 51 studies published between 1972 and 2013 were obtained by the Blood Pressure Lowering Treatment Trialists' Collaboration (Oxford University, Oxford, UK). We pooled the data to investigate the stratified effects of blood pressure-lowering treatment in participants with and without prevalent cardiovascular disease (ie, any reports of stroke, myocardial infarction, or ischaemic heart disease before randomisation), overall and across seven systolic blood pressure categories (ranging from <120 to ≥170 mm Hg). The primary outcome was a major cardiovascular event (defined as a composite of fatal and non-fatal stroke, fatal or non-fatal myocardial infarction or ischaemic heart disease, or heart failure causing death or requiring admission to hospital), analysed as per intention to treat. Findings: Data for 344 716 participants from 48 randomised clinical trials were available for this analysis. Pre-randomisation mean systolic/diastolic blood pressures were 146/84 mm Hg in participants with previous cardiovascular disease (n=157 728) and 157/89 mm Hg in participants without previous cardiovascular disease (n=186 988). There was substantial spread in participants' blood pressure at baseline, with 31 239 (19·8%) of participants with previous cardiovascular disease and 14 928 (8·0%) of individuals without previous cardiovascular disease having a systolic blood pressure of less than 130 mm Hg. The relative effects of blood pressure-lowering treatment were proportional to the intensity of systolic blood pressure reduction. After a median 4·15 years' follow-up (Q1–Q3 2·97–4·96), 42 324 participants (12·3%) had at least one major cardiovascular event. In participants without previous cardiovascular disease at baseline, the incidence rate for developing a major cardiovascular event per 1000 person-years was 31·9 (95% CI 31·3–32·5) in the comparator group and 25·9 (25·4–26·4) in the intervention group. In participants with previous cardiovascular disease at baseline, the corresponding rates were 39·7 (95% CI 39·0–40·5) and 36·0 (95% CI 35·3–36·7), in the comparator and intervention groups, respectively. Hazard ratios (HR) associated with a reduction of systolic blood pressure by 5 mm Hg for a major cardiovascular event were 0·91, 95% CI 0·89–0·94 for partipants without previous cardiovascular disease and 0·89, 0·86–0·92, for those with previous cardiovascular disease. In stratified analyses, there was no reliable evidence of heterogeneity of treatment effects on major cardiovascular events by baseline cardiovascular disease status or systolic blood pressure categories. Interpretation: In this large-scale analysis of randomised trials, a 5 mm Hg reduction of systolic blood pressure reduced the risk of major cardiovascular events by about 10%, irrespective of previous diagnoses of cardiovascular disease, and even at normal or high–normal blood pressure values. These findings suggest that a fixed degree of pharmacological blood pressure lowering is similarly effective for primary and secondary prevention of major cardiovascular disease, even at blood pressure levels currently not considered for treatment. Physicians communicating the indication for blood pressure lowering treatment to their patients should emphasise its importance on reducing cardiovascular risk rather than focusing on blood pressure reduction itself. Funding: British Heart Foundation, UK National Institute for Health Research, and Oxford Martin School

    Blood pressure-lowering treatment for prevention of major cardiovascular diseases in people with and without type 2 diabetes: an individual participant-level data meta-analysis

    Full text link
    Background: Controversy exists as to whether the threshold for blood pressure-lowering treatment should differ between people with and without type 2 diabetes. We aimed to investigate the effects of blood pressure-lowering treatment on the risk of major cardiovascular events by type 2 diabetes status, as well as by baseline levels of systolic blood pressure. Methods: We conducted a one-stage individual participant-level data meta-analysis of major randomised controlled trials using the Blood Pressure Lowering Treatment Trialists' Collaboration dataset. Trials with information on type 2 diabetes status at baseline were eligible if they compared blood pressure-lowering medications versus placebo or other classes of blood pressure-lowering medications, or an intensive versus a standard blood pressure-lowering strategy, and reported at least 1000 persons-years of follow-up in each group. Trials exclusively on participants with heart failure or with short-term therapies and acute myocardial infarction or other acute settings were excluded. We expressed treatment effect per 5 mm Hg reduction in systolic blood pressure on the risk of developing a major cardiovascular event as the primary outcome, defined as the first occurrence of fatal or non-fatal stroke or cerebrovascular disease, fatal or non-fatal ischaemic heart disease, or heart failure causing death or requiring hospitalisation. Cox proportional hazard models, stratified by trial, were used to estimate hazard ratios (HRs) separately by type 2 diabetes status at baseline, with further stratification by baseline categories of systolic blood pressure (in 10 mm Hg increments from <120 mm Hg to ≥170 mm Hg). To estimate absolute risk reductions, we used a Poisson regression model over the follow-up duration. The effect of each of the five major blood pressure-lowering drug classes, including angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, β blockers, calcium channel blockers, and thiazide diuretics, was estimated using a network meta-analysis framework. This study is registered with PROSPERO, CRD42018099283. Findings: We included data from 51 randomised clinical trials published between 1981 and 2014 involving 358 533 participants (58% men), among whom 103 325 (29%) had known type 2 diabetes at baseline. The baseline mean systolic/diastolic blood pressure of those with and without type 2 diabetes was 149/84 mm Hg (SD 19/11) and 153/88 mm Hg (SD 21/12), respectively. Over 4·2 years median follow-up (IQR 3·0–5·0), a 5 mm Hg reduction in systolic blood pressure decreased the risk of major cardiovascular events in both groups, but with a weaker relative treatment effect in participants with type 2 diabetes (HR 0·94 [95% CI 0·91–0·98]) compared with those without type 2 diabetes (0·89 [0·87–0·92]; pinteraction=0·0013). However, absolute risk reductions did not differ substantially between people with and without type 2 diabetes because of the higher absolute cardiovascular risk among participants with type 2 diabetes. We found no reliable evidence for heterogeneity of treatment effects by baseline systolic blood pressure in either group. In keeping with the primary findings, analysis using stratified network meta-analysis showed no evidence that relative treatment effects differed substantially between participants with type 2 diabetes and those without for any of the drug classes investigated. Interpretation: Although the relative beneficial effects of blood pressure reduction on major cardiovascular events were weaker in participants with type 2 diabetes than in those without, absolute effects were similar. The difference in relative risk reduction was not related to the baseline blood pressure or allocation to different drug classes. Therefore, the adoption of differential blood pressure thresholds, intensities of blood pressure lowering, or drug classes used in people with and without type 2 diabetes is not warranted. Funding: British Heart Foundation, UK National Institute for Health Research, and Oxford Martin School

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector

    Get PDF
    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions

    Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector

    Get PDF
    A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level
    corecore