122 research outputs found
Isolation and structural determination of non-racemic tertiary cathinone derivatives
The racemic tertiary cathinones N,N-dimethylcathinone (1), N,N-diethylcathinone (2) and 2-(1-pyrrolidinyl)-propiophenone (3) have been prepared in reasonable yield and characterized using NMR and mass spectroscopy. HPLC indicates that these compounds are isolated as the anticipated racemic mixture. These can then be co-crystallized with (+)-O,O′-di-p-toluoyl-D-tartaric, (+)-O,O′-dibenzoyl-D-tartaric and (−)-O,O′-dibenzoyl-L-tartaric acids giving the single enantiomers S and R respectively of 1, 2 and 3, in the presence of sodium hydroxide through a dynamic kinetic resolution. X-ray structural determination confirmed the enantioselectivity. The free amines could be obtained following basification and extraction. In methanol these are reasonably stable for the period of several hours, and their identity was confirmed by HPLC and CD spectroscopy
A three-dimensional crustal seismic velocity model for southern California from a composite event method
We present a new crustal seismic velocity model for southern California derived from P and S arrival times from local earthquakes and explosions. To reduce the volume of data and ensure a more uniform source distribution, we compute "composite event" picks for 2597 distributed master events that include pick information for other events within spheres of 2 km radius. The approach reduces random picking error and maximizes the number of S wave picks. To constrain absolute event locations and shallow velocity structure, we also use times from controlled sources, including both refraction shots and quarries. We implement the SIMULPS tomography algorithm to obtain three-dimensional (3-D) V_p and V_p/V_s structure and hypocenter locations of the composite events. Our new velocity model in general agrees with previous studies, resolving low-velocity features at shallow depths in the basins and some high-velocity features in the midcrust. Using our velocity model and 3-D ray tracing, we relocate about 450,000 earthquakes from 1981 to 2005. We observe a weak correlation between seismic velocities and earthquake occurrence, with shallow earthquakes mostly occurring in high P velocity regions and midcrustal earthquakes occurring in low P velocity regions. In addition, most seismicity occurs in regions with relatively low V_p/V_s ratios, although aftershock sequences following large earthquakes are often an exception to this pattern
Fadraciclib (CYC065), a novel CDK inhibitor, targets key pro-survival and oncogenic pathways in cancer
Cyclin-dependent kinases (CDKs) contribute to the cancer hallmarks of uncontrolled proliferation and increased survival. As a result, over the last two decades substantial efforts have been directed towards identification and development of pharmaceutical CDK inhibitors. Insights into the biological consequences of CDK inhibition in specific tumor types have led to the successful development of CDK4/6 inhibitors as treatments for certain types of breast cancer. More recently, a new generation of pharmaceutical inhibitors of CDK enzymes that regulate the transcription of key oncogenic and pro-survival proteins, including CDK9, have entered clinical development. Here, we provide the first disclosure of the chemical structure of fadraciclib (CYC065), a CDK inhibitor and clinical candidate designed by further optimization from the aminopurine scaffold of seliciclib. We describe its synthesis and mechanistic characterization. Fadraciclib exhibits improved potency and selectivity for CDK2 and CDK9 compared to seliciclib, and also displays high selectivity across the kinome. We show that the mechanism of action of fadraciclib is consistent with potent inhibition of CDK9-mediated transcription, decreasing levels of RNA polymerase II C-terminal domain serine 2 phosphorylation, the pro-survival protein Myeloid Cell Leukemia 1 (MCL1) and MYC oncoprotein, and inducing rapid apoptosis in cancer cells. This cellular potency and mechanism of action translate to promising anti-cancer activity in human leukemia mouse xenograft models. Studies of leukemia cell line sensitivity identify mixed lineage leukemia (MLL) gene status and the level of B-cell lymphoma 2 (BCL2) family proteins as potential markers for selection of patients with greater sensitivity to fadraciclib. We show that the combination of fadraciclib with BCL2 inhibitors, including venetoclax, is synergistic in leukemic cell models, as predicted from simultaneous inhibition of MCL1 and BCL2 pro-survival pathways. Fadraciclib preclinical pharmacology data support its therapeutic potential in CDK9- or CDK2-dependent cancers and as a rational combination with BCL2 inhibitors in hematological malignancies. Fadraciclib is currently in Phase 1 clinical studies in patients with advanced solid tumors (NCT02552953) and also in combination with venetoclax in patients with relapsed or refractory chronic lymphocytic leukemia (CLL) (NCT03739554) and relapsed refractory acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) (NCT04017546)
Identifying and prioritising unanswered research questions for people with hyperacusis: James Lind Alliance Hyperacusis Priority Setting Partnership
Objective To determine research priorities in hyperacusis that key stakeholders agree are the most important. Design/setting A priority setting partnership using two international surveys, and a UK prioritisation workshop, adhering to the six-staged methodology outlined by the James Lind Alliance. Participants People with lived experience of hyperacusis, parents/carers, family and friends, educational professionals and healthcare professionals who support and/or treat adults and children who experience hyperacusis, including but not limited to surgeons, audiologists, psychologists and hearing therapists. Methods The priority setting partnership was conducted from August 2017 to July 2018. An international identification survey asked respondents to submit any questions/uncertainties about hyperacusis. Uncertainties were categorised, refined and rephrased into representative indicative questions using thematic analysis techniques. These questions were verified as ‘unanswered’ through searches of current evidence. A second international survey asked respondents to vote for their top 10 priority questions. A shortlist of questions that represented votes from all stakeholder groups was prioritised into a top 10 at the final prioritisation workshop (UK). Results In the identification survey, 312 respondents submitted 2730 uncertainties. Of those uncertainties, 593 were removed as out of scope, and the remaining were refined into 85 indicative questions. None of the indicative questions had already been answered in research. The second survey collected votes from 327 respondents, which resulted in a shortlist of 28 representative questions for the final workshop. Consensus was reached on the top 10 priorities for future research, including identifying causes and underlying mechanisms, effective management and training for healthcare professionals. Conclusions These priorities were identified and shaped by people with lived experience, parents/carers and healthcare professionals, and as such are an essential resource for directing future research in hyperacusis. Researchers and funders should focus on addressing these priorities.Additional co-authors: Tracey Pollard, Helen Henshaw, Toto A Gronlund, Derek J Hoar
Mechanism-Based Screen for G1/S Checkpoint Activators Identifies a Selective Activator of EIF2AK3/PERK Signalling
Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes
Perspectives on Immunoglobulins in Colostrum and Milk
Immunoglobulins form an important component of the immunological activity found in milk and colostrum. They are central to the immunological link that occurs when the mother transfers passive immunity to the offspring. The mechanism of transfer varies among mammalian species. Cattle provide a readily available immune rich colostrum and milk in large quantities, making those secretions important potential sources of immune products that may benefit humans. Immune milk is a term used to describe a range of products of the bovine mammary gland that have been tested against several human diseases. The use of colostrum or milk as a source of immunoglobulins, whether intended for the neonate of the species producing the secretion or for a different species, can be viewed in the context of the types of immunoglobulins in the secretion, the mechanisms by which the immunoglobulins are secreted, and the mechanisms by which the neonate or adult consuming the milk then gains immunological benefit. The stability of immunoglobulins as they undergo processing in the milk, or undergo digestion in the intestine, is an additional consideration for evaluating the value of milk immunoglobulins. This review summarizes the fundamental knowledge of immunoglobulins found in colostrum, milk, and immune milk
Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941
Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling.
Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes
- …
