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Abstract

Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought
to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle
exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a
broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several
novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one,
CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed
phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-
alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically
follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not
trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by
EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports
apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer
cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and
taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A
phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical
tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-
centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We
demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective,
proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes.
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Introduction

G1/S checkpoint activation is recognized to play an important

role in tumour suppression [1]. The retinoblastoma tumour

suppressor protein (pRB) is a critical component in this checkpoint,

acting to inhibit the transcription of genes required for DNA

synthesis [2]. In addition, pRB prevents the degradation of the

cyclin dependent kinase inhibitors p21CIP and p27KIP1 by the Skp-

Cullin-F-box protein (SCF) ubiquitin ligase complex [3]. Phosphor-

ylation of pRB by the cyclin dependent kinases (CDK) 4 or 6 and

CDK2 inhibits these different activities of pRB, permitting transit of

cells into S-phase and facilitating DNA replication [4,5].

G1/S checkpoint control is impaired in the majority of cancers

[6,7]. Loss of control is caused by genetic alterations that affect the

functioning or expression of proteins that regulate the action of

pRB. Such alterations comprise inactivating mutations or gene loss

of the p16INK4A CDK inhibitor, which inhibits the kinase activity

of CDK4 and 6 [8]; mutations in CDK4 or CDK6, rendering

these kinase catalytic subunits resistant to the action of INK4

family CDK inhibitors [9]; and the deregulated expression of D

cyclin genes, arising from either gene translocation [10,11] or,

more frequently, gene transcriptional activation as a consequence

of oncogene activation. Signalling through the Ras, wingless (Wnt)

and nuclear factor kappa B (NFkB) pathways all result in the
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transcriptional activation of D cyclin genes and mutational

activation of these pathways in cancers is thought to contribute

to unlicensed G1/S checkpoint transit [12,13].

Small molecule chemical probes represent important tools for

understanding cell pathways and validating potential therapeutic

approaches [14]. Identification of cell-permeable small molecules

that trigger the G1/S checkpoint through activation of pRB may

provide a promising avenue for reinstating proliferation control in

the clinical control of malignant disease.

Current efforts have primarily focussed on the catalytic

inhibition of the G1/S pRB-phosphorylating cyclin dependent

kinases CDK4 and CDK2 [15,16]. However, a considerable level

of functional redundancy appears to exist amongst members of this

kinase family, and a full complement of G1/S regulatory cyclin-

CDK complexes may be essential in some but not other cell types

[17,18], suggesting that effective checkpoint activation through

inhibition of these enzymes could be more problematic than

anticipated.

To identify agents and alternative targets capable of delivering

G1/S checkpoint activation, we undertook a mechanism-based

screen, scoring for the inhibition of pRB phosphorylation in

human cancer cells exposed to a library of small molecules. Here

we report identification and characterization of small molecule

agents that potently inhibit pRB phosphorylation and prolifera-

tion, amongst them a known kinase inhibitor with activity against

CDKs. We characterize in detail one compound, CCT020312,

which stood out using combined assessment of chemical properties

and biological effects. This compound does not inhibit CDKs but

leads to rapid loss of D cyclin expression, which we demonstrate

requires signalling through the eukaryotic initiation factor 2A

kinase 3 (EIF2AK3/PERK). It is known that EIF2AK3/PERK

activation is caused by agents that disable ER functioning, leading

to accumulation of unfolded proteins [19]. In contrast, we show

that CCT020312 does not elicit a generalized unfolded protein

response signal, but instead operates by a mechanism of action

that selectively boosts EIF2AK3/PERK signalling output.

Results

Identification of compounds leading to block of pRB
phosphorylation in cells

We used our previously described high-throughput assay to

identify agents capable of attenuating pRB phosphorylation in

proliferating HT29 human colon carcinoma cells [20], and

material and methods. HT29 cells were chosen for the screen

because they possess functional pRB but are deficient for the

tumour suppressor TP53 [21]. This eliminates identification of

undesired hits that act through TP53-mediated induction of the

CDK inhibitor p21CIP1 and associated block of pRB phosphor-

ylation, which is common as a response to non-specific chemical

stress including chemically induced DNA damage. Hits in the

assay cause loss of Ser608-phosphorylation on human pRB (P-

S608-pRB), a known target of cyclin D-activated CDK4/6 [22].

Using this assay we screened the Cancer Therapeutics Unit

compound library of 63,000 chemically diverse compounds by

applying these at a concentration of 10 mM for 24 hours. A total of

53 compounds decreased the phospho-Ser608 pRB signal in

HT29 cells by greater than 50% compared to vehicle-treated

control, giving a screen hit rate of 0.08%. Eight of these hits were

reconfirmed as inhibitors of Ser608 phosphorylation of pRB by

western blot analysis (not shown).

Figure 1A shows the chemical structures of the eight confirmed

hits, arranged according to their potency for reducing the P-S608-

pRB signal. To further assess these eight hits we considered their

chemical properties (Figure 1B and Results S1) as well as biology-

led criteria (Figure 1B), including good correlation between

inhibition of pRB phosphorylation and growth inhibition,

suggesting that the latter is a consequence of the former. These

criteria favoured CCT039836 and CCT020312 (see Figure 1B)

and hence these were chosen for further characterization.

A search for prior art identified CCT039836 as a CDK

inhibitor [23] and our subsequent assessment showed half-

maximal inhibition of recombinant CDK4/cyclin D1 enzyme at

a concentration of 0.2 mM, with comparable potency against

recombinant G2/M kinase CDK1/cyclin B, (not shown).

Compounds with CDK inhibitory activity would be expected as

hits from a cell based screen using inhibition of pRB phosphor-

ylation as an endpoint, and identification of the known CDK

inhibitor CCT039836 provided assurance of assay performance.

In contrast, addition of CCT020312 to kinase reactions

containing CDK4/cyclin D or CDK1/cyclin B showed no effect

on the activity of these kinases at concentrations 10 times the EC50

for suppression of pRB phosphorylation in cellular assays (Figure

S1), nor did we find an effect on cyclin E- or cyclin A-activated

CDK2 (Figure S1). Inhibition of these kinases was seen in parallel

reactions containing the CDK inhibitors flavopiridol or R-

roscovitine (Figure S1). Therefore we concluded that

CCT020312 does not act through direct CDK inhibition.

Cellular effects of CCT020312
Treatment of HT29 cells with CCT020312 for 24 hours

revealed a concentration-dependent loss of P-S608-pRB signal,

with a linear response between 1.8 and 6.1 mM (Figure 2A).

Parallel assays in HCT116 colon carcinoma cells, revealed

inhibition of pRB phosphorylation at comparable concentrations

with half-maximal reduction of pRB phosphorylation at 4.2 and

5.7 mM in HT29 and HCT116 cells respectively (Figure S2).

These concentrations closely match those required for half-

maximal inhibition of growth (GI50) in these cell lines

(GI50 = 3.2 and 5.4 mM respectively) (Figure S2), in line with our

previous results obtained for the purpose of compound triage

(Figure 1B). Lastly, CCT020312 treatment effectively inhibited

cell proliferation (as measured at 96 hours) even if treatment was

for 2 hours only with subsequent compound washout, indicating

that CCT020312 is capable of eliciting durable rather than

transient cytostasis (Figure S2).

Flow-cytometry of HT29 cells exposed to 10 mM CCT020312

(Figure 2B) revealed an increased number of cells in the G1 phase

of the cell cycle at 16 and 24 hours as well as effective reduction of

DNA synthesis (Figure 2C), in agreement with the expectation that

loss of pRB phosphorylation results in blocking S phase entry.

Immunoblotting of cell lysates confirmed the presence of fast

migrating pRB in such cells and accumulation of a pRB species

specifically recognised by an antibody for the underphosphory-

lated active form of pRB, NP-pRB [22] (Figure 2D), indicating

that genuine activation of pRB signalling arises in CCT020312-

treated cancer cells.

To begin to uncover the molecular mechanism responsible for

the observed activation of pRB signalling and G1 arrest, we

examined the effect of CCT020312 on the expression of cell cycle

regulating proteins. Treatment of HT29 cells with 10 mM

CCT020312 for 24 hours reduced the amount of the G1/S

cyclins D1, D2, E and A as well as the CDK catalytic subunit

CDK2 and increased the level of the CDK inhibitor p27KIP1

present in such cells (Figure 2E). The loss of D-type cyclins D1 and

D3 was readily detectable 120 min after treatment (Figure 2F),

coincident with the accumulation of underphosphorylated pRB,

indicating that cyclin D loss could be responsible for the

Mechanism-Based G1 Checkpoint-Activator Screen

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e28568



suppression of pRB phosphorylation. In contrast, loss of cyclin A

and E and increased p27/KIP1 occurred later (Figure S3), and

thus may be consequence, rather than cause, of the inhibition of

pRB phosphorylation and G1/S transit. Cyclin D1 loss following

CCT020312 treatment was observed across a range of different

human cancer cell lines (Figure S3), including those known to

express aberrantly high amounts of this cyclin.

To determine the reason for the observed cyclin D1 loss we

probed for phosphorylation on Thr286 (Figure S4), which is

known to target this cyclin for regulated degradation by the

proteasome [24,25] and measured the protein half-life (Figure S4).

We found that neither was affected by CCT020312, nor were

there detectable alterations in the cyclin D1 mRNA within the

relevant time period (Figure S4), indicating that CCT020312 does

Figure 1. Chemical structure and properties of screen identified hits. A) Compound chemical structures. Compounds are arranged in
order of decreasing potency. B) Summary of cellular effects and rationale for compound triage. EC50 values for inhibition of pRB
phosphorylation and GI50 values for inhibition of cell growth represent the calculated mean (n = 3). The cell-based immunoassay for the detection of
pRB-P-Ser608 (Barrie et al. 2003) was run in HT29 colon carcinoma cells and used to quantify the EC50 for inhibition of pRB phosphorylation at
24 hours, with sulphorhodamine B staining to quantify the GI50 values at 96 hours post compound addition. Protein remaining in wells at 24 hours
was determined using bicinchoninic acid assays.
doi:10.1371/journal.pone.0028568.g001
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Figure 2. Cellular responses to CCT020312 treatment. A) Concentration-dependence of P-S608-pRB loss in CCT020312-exposed
cells. HT29 cells seeded in 96-well plates were exposed to CCT020312 for 24 hours. Ser608 pRB phosphorylation was quantified using the cell-based
immunoassay for the detection of pRB-P-Ser608 as employed for the primary screen (Barrie et al. 2003). Signals normalized to protein content (BCA
assay) are shown. Error bars represent the standard error of the mean (n23). The range for linear response is indicated. B) C) Effects of CCT020312
on cell cycle progression and DNA synthesis. HT29 cells were treated for 16 and 24 hours with 10 mM CCT020312. Cells were stained with
propidium iodide and analysed by flow-cytometry (B). Cells were treated with CCT020312 for 16 or 24 hours. BrdU was added to the medium for the
final two hours. Cells were stained with anti-BrdU antibody and analysed by flow-cytometry (C). D) Accumulation of Ser608 unphosphorylated
pRB in CCT020312 exposed cells. HT29 cells were incubated in the presence of the vehicle (MOCK) or CCT020312 for 24 hours and analysed by
immunoblotting. NP-pRB denotes use of the antibody for detection of the non-phosphorylated Ser608 pRB site. E) Marker expression 24 h post
CCT020312 exposure. HT29 cells were exposed to 10 mM CCT020312 or vehicle (MOCK) for 24 hours. Lysates were analysed by immunoblot for
marker proteins as indicated. Membrane staining with amido black documents loading. F) CCT020312 induces a rapid loss of D cyclin
expression. HT29 cells were treated with 10 mM CCT020312 for the times indicated and lysates analyzed as in E. Tubulin probing documents
loading.
doi:10.1371/journal.pone.0028568.g002
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not act by reducing cyclin D1 gene transcription or protein

stability.

cDNA microarray-based transcriptional profiling reveals a
candidate mechanism of action

As an unbiased approach to determine the mechanism by which

CCT020312 elicits its effects, we performed cDNA microarray-

based transcriptional profiling using mRNA from HT29 cells

treated for different times with either 10 mM CCT020312

or vehicle (Dimethyl sulfoxide, DMSO). To interpret the

CCT020312-induced gene expression changes we employed

Connectivity Map (cmap), a tool based on pattern matching for

the discovery of functional connections between pharmacological

agents [26]. This revealed close similarity to the gene regulatory

signature of thioridazine, a neuroleptic dopamine antagonist

without known links to cyclin D expression, and also to 15-delta

prostaglandin J2, which is known to cause a rapid reduction of

cyclin D1 protein through the activation of the eukaryotic

translation factor 2A (EIF2A) Serine 51 (Ser51) kinase EI-

F2AK3/PERK, leading to inhibition of cyclin D1 mRNA

translation [27], see Table S1. We note that there is no structural

resemblance between CCT020312 and either of these agents,

suggesting that their common transcriptional effects are based on

independent chemistry.

We also performed Euclidian distance metric clustering of the

CCT020312 data alongside cDNA microarray data for 22 different

targeted agents previously analyzed in the Cancer Research UK

Cancer Therapeutics Unit using the CRUKDMF_22K_v1.0.0

(GEO accession GPL4348) or the CRUKDMF_WGA_v1.0.0

(GEO accession GPL3904) cDNA microarray platform (Figure 3).

This revealed co-clustering of CCT020312 with the heat shock

protein 90 (HSP90) molecular chaperone inhibitor 17-allylamino-

17-demethoxy-geldanamycin (17-AAG) and the sarco/endoplasmic

reticulum Ca2+ ATPase targeting agent thapsigargin (Figure 3B)

which, like 15-delta prostaglandinJ2, triggers EIF2A phosphoryla-

tion though EIF2AK3/PERK. A subsequently generated cDNA

microarray data set from cells treated with polyinosinic-polycy-

tidylic acid (poly (I:C)), another effector of EIF2A phosphorylation,

also clustered with CCT020312. An adjacent cluster (cluster II)

contained phosphatidylinositol 3-kinase (PI3K) targeting agents

with differing scaffolds (Figure 3B).

CCT020312 elicits EIF2A phosphorylation in cells
On the basis of the above mRNA profiling analysis we

hypothesised that CCT020312 might act by inhibiting HSP90

Figure 3. Mechanism of action predictions using cDNA microarray-based cluster analysis. A) Cluster analysis. Data from CCT020312
and 22 other molecularly targeted agents, 296 samples in total, established using either the CRUK Human Whole Genome-wide Array v1.0.0 or the
CRUKDMF_22K_v1.0.0 array were used. Genes that significantly varied with treatment (ANOVA p,0.05 with Bonferoni-correction) were used for
hierarchical clustering. Clustering was performed using the Euclidian distance as a similarity measure. B) Cluster deconvolution. Conditions that
cluster with (Cluster I) or adjacent to (Cluster II) CCT020312 are shown.
doi:10.1371/journal.pone.0028568.g003
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or PI3 kinase or by affecting EIF2A phosphorylation. We thus

probed lysates prepared from HT29 cells treated with

CCT020312 for biomarkers indicative of these respective events.

We found no evidence of reduced phosphorylation of the PI3K

target AKT/PKB (Ser473) nor of ribosomal protein S6 kinase

RPS6KB1 (Thr299), [28] (not shown), nor induction of heat shock

protein 70, known to ensue from HSP90 inhibition [29] (not

shown). In contrast a clear increase in phosphorylation of EIF2A

on Ser51 was seen upon treatment of either HT29 or MCF7 cells

with CCT020312 (Figure 4A, see Figure S5 for quantification).

Rapid loss of D cyclins is a known event linked to attenuation of

protein translation following EIF2A phosphorylation [30,31] and

hence readily explained by this mode of signalling. Together these

results strongly support a mechanism in which CCT020312 acts as

an effector of Ser51 EIF2A phosphorylation.

To determine the structural requirements for activity and

biomarker modulation seen in CCT020312-treated cells we studied

several analogues (Figure 4C). These studies revealed a tight

correlation between growth inhibition, retinoblastoma protein

activation and the activation of EIF2A phosphorylation

(Figure 4B). Removal of lipophilicity from the core scaffold of

CT020312 (exemplified by analogues CRT53900 and CRT54039)

Figure 4. EIF2A phosphorylation in CCT020312-treated cells. A) Detection of EIF2A phosphorylation following CCT020312
treatment. HT29 human colon cancer and MCF-7 human breast cancer cells were treated with 10 mM CCT020312 (+) or vehicle () for the times
indicated. Lysates were prepared and immunoblot-analysis performed using antibodies to detect EIF2A and Ser51-phosphorylated EIF2A (P-
S51EIF2A) as indicated. B) Structure-activity relationships. Representatives from different chemical series were tested using HT29 cells for their
respective ability to activate EIF2A phosphorylation. C) Analogue structures and potency of analogues for reducing P-S608-pRB and
growth.
doi:10.1371/journal.pone.0028568.g004
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(Figure 4B) resulted in a substantial (16–17 fold) loss of potency in

both RB phosphorylation and cell growth assays. Likewise these

analogues lost the capacity to activate EIF2A phosphorylation.

Analogues CRT54048 and CRT54045, in which lipophilicity was

restored by the introduction of a biphenyl ring system, regained

activity. Significantly these compounds also regained the ability to

trigger EIF2A phosphorylation although a two-fold higher concen-

tration was required to achieve a level of response comparable to

CCT020312, consistent with the slightly reduced potency of these

analogues in other assays. Analogues CT129131 and CT129132

prepared through successive removal of the two N-ethyl groups

retained the ability to activate pRB and inhibit growth with only

slight (two- to three-fold) reduction in potency; the ability to trigger

EIF2A phosphorylation was retained although a two-fold higher

concentration was again required. Hence a close structure-activity

relationship exists between the inhibition of pRB phosphorylation,

growth inhibition and the activation of EIF2A phosphorylation,

supporting the view that these activities are mechanistically linked.

EIF2A phosphorylation and cyclin D1 loss by CCT020312
requires EIF2AK3/PERK

EIF2A phosphorylation arises from activation of four different

EIF2A kinases (EIF2AK1-4) that respond to distinct signalling cues

Figure 5. Signalling leading to CCT020312-dependent EIF2A phophorylation. A) Schematic showing EIF2A kinases and their
regulation. Pathway agonists thapsigargin, poly (I:C) and NaAS2O3 and their locus of action are indicated. B) Effect of EIF2AK3/PERK ablation
on EIF2A phosphorylation by CCT020312. U-2OS human osteosarcoma cells were transfected with either of two different EIF2AK3/PERK siRNA
oligonucleotides (PERK-1, PERK-2) or an irrelevant control (NT) for 72 hours. Cells were treated with 10 mM CCT020312 (CCT) or 2 mM thapsigargin (Tg)
for the indicated times. Lysates were analysed by immunoblot as indicated. C) Quantitation of PERK mRNA expression in siPERK transfected
cells. PERK mRNA was quantified in siRNA tranfected cells using SYBR Green based quantitative PCR. The comparative cycle threshold method was
used to determine the fold change in PERK mRNA relative to cells tranfected with irrelevant oligonucleotide. GAPDH was quantified in parallel and
used to normalise between samples. Bars represent the mean fold change in triplicate technical replicates. D) Ablation of EIF2AK3/PERK
prevents CCT020312-mediated cyclin D loss and accumulation of underphosphorylated pRB. HCT116 human colon cancer cells were
transfected with EIF2AK3/PERK siRNA oligo ‘2’ or non-targeting siRNA (NT). After 72 hours cells were treated with 10 mM CCT020312, 2 mM
thapsigargin (Tg) or DMSO for times indicated. Cell lysates were analysed by immunoblotting as indicated.
doi:10.1371/journal.pone.0028568.g005
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(Figure 5A), [32,33]. EIF2AK1/HRI is activated by heme

accumulating in erythrocytes or oxidative stress, EIF2AK2/PKR

by double-stranded RNA, EIF2AK3/PERK through an increase

of unfolded proteins in the endoplasmic reticulum and EIF2AK4/

GCN2 through deprivation of essential amino acids.

We tested for the involvement of these different EIF2AKs in the

response to CCT020312. EIF2AK3/PERK depletion using small

interfering RNA (siRNA) oligonucleotides strongly attenuated

Ser51 EIF2A phosphorylation induced in response to CCT020312

or thapsigargin (Figure 5B, results quantified in Figure S6), and

this was seen with two unrelated PERK targeting oligonucleotides.

qPCR- based mRNA quantification (Figure 5C) revealed reduc-

tion of EIF2AK3/PERK mRNA in cells transfected with either

oligonucleotide. Efficacy of depletion was higher in PERK-2 than

PERK-1-transfected cells, consistent with the superior reduction of

signalling seen in cells transfected with PERK-2 olignucleotide

(Figure 5B). Knockdown of EIF2AK3/PERK also abolished cyclin

D1 loss and the accumulation of underphosphorylated pRB arising

subsequent to treatment with both agents, consistent with our

hypothesis that these molecular events result from the activation of

EIF2AK3/PERK signalling by CCT020312 or thapsigargin

(Figure 5D, results quantified in Figure S6). Ablation of

EIF2AK2/PKR by siRNA had no effect, although its knockdown

inhibited EIF2A phosphorylation in response to poly (I:C), a

known activator of this EIF2AK (Figure S7). Likewise, addition of

hemin, which inhibits EIF2AK1/HRI [34] and which suppressed

EIF2A phosphorylation in cells exposed to oxidative stress, did not

affect EIF2A phosphorylation in cells treated with CCT020312

(Figure S7). Together these observations clearly indicate the

critical involvement of EIF2AK3/PERK in the phosphorylation of

EIF2A, cyclin D loss and the attenuation of pRB phosphorylation

seen in CCT020312-treated cancer cells.

Selective stimulation of EIF2A signalling by CCT020312
EIF2AK3/PERK activation and the consequent phosphoryla-

tion of EIF2A classically ensue as part of the unfolded protein

response (UPR) [35]. The UPR is initiated when unfolded or

misfolded proteins accumulate in the lumen of the endoplasmic

reticulum, leading to EIF2AK3/PERK activation and, as a

consequence, activating transcription factor 4 (ATF4) driven gene

transcription, but also other signalling, unrelated to EIF2AK3/

PERK (see Figure 6A). Thus, transcription factor ATF6 is released

from its ER membrane position allowing translocation to the cell

nucleus. Furthermore, protein kinase and nuclease inositol-

requiring 1 (IRE1) is activated and facilitates mRNA processing

to produce the spliced variant form of the X-box transcription

factor XBP1 (XBP1s) [35].

To assess whether ATF6 and IRE1 are activated alongside

EIF2AK3/PERK, CCT020312-treated HT29 colon cancer and

MCF7 breast cancer cells were probed for markers downstream of

these different signalling effectors. Consistent with its effect on

Ser51-EIF2A phosphorylation, CCT020312-treatment of both cell

types resulted in accumulation of the ATF4 target C/EBP

homology protein/growth arrest and DNA damage 153

(CHOP/Gadd153) (Figure 6B). However, induction of the ATF6

target 78 kDa glucose-regulated protein/Binding immunoglobulin

protein (GRP78/BIP) was virtually undetectable, even at late

times (16 h, Figure 6B) or following treatment with higher

concentrations of CCT020312 (Figure 6C). Induction of

GRP78/BIP was readily detected in parallel cultures of these

cells treated with thapsigargin. We also isolated mRNA from

CCT020312 and thapsigargin-treated HCT116 and HT29 cells

and probed for the presence of spliced XBP1 transcript using PCR

(Figure S8). Spliced XBP1 mRNA was not detected in

CCT020312-treated cells but was readily detected in thapsigar-

gin-treated cells (Figure S8). As observed previously, EIF2A

phosphorylation was readily increased following both treatments

in parallel samples (Figure S8), indicative that CCT020312 as well

as thapsigargin had both elicited EIF2AK activation. These results

suggest that, in contrast to thapsigargin, CCT020312 does not act

by triggering the full spectrum of UPR responses.

Inspection of mRNA expression patterns based on the cDNA

microarray analysis described earlier supports this hypothesis

(Figure S9). Expression of two genes, GRP94/HSP90B1 and

DNAJ3/p58IPK, recently shown to be regulated during UPR

through the IRE1 effector XBP1 [36] was not up-regulated in

CCT020312-treated cells, although these genes were up-regulated

in thapsigargin-treated cells (Figure S9). However, up-regulation of

mRNA for CHOP/Gadd135 and the tryptophanyl-tRNA synthe-

tase WARS, previously shown to depend on EIF2A phosphory-

lation [37], was seen with both treatments (Figure S9).

Confirmatory evidence for the absence of outright UPR also

came from the analysis of primary mouse embryonic fibroblasts

(MEFs), a cell model that has been used for establishing many of

the concepts of UPR signalling transmission in mammals [35].

CCT020312 treatment of the MEFs led to CHOP induction,

whilst accumulation of the small splice-variant of XBP1 (XBP1s)

was not triggered. Rapid XBP1s accumulation was however seen

when these cells were treated with thapsigargin (Figure S9).

CCT020312 also suppressed cyclin D1 expression in these

fibroblasts. These observations are consistent with the involvement

of EIF2AK3/PERK activity in the CCT020312 elicited effects but

strongly argue against induction of full UPR as the molecular

mechanism by which CCT020312 acts.

To probe for the significance of PERK in the antiproliferative

action of CCT020312, we used SV40 immortalised fibroblasts

from wild-type (wt) and PERK knockout (PERK 2/2) mouse

embryos ([38]) (Figure 7). In keeping with our earlier results

indicating EIF2AK3/PERK-dependence of the CCT020312-

induced EIF2A phosphorylation we found EIF2A phosphorylation

to be radically reduced in PERK 2/2 MEFs following exposure

to either thapsigargin or CCT020312 (Figure 7A,B). Significantly,

cell cycle analysis revealed a considerable distortion of the cell

cycle profile in wt MEFs following CCT020312 treatment, with

overt inhibition of progression into G2/M-phase, as revealed

when a nocodazole-induced G2/M block was established

following exposure of these wt MEFs to CCT020312 (Figure 7C,

D). We note that these cells did not respond with G1-phase

accumulation (2n) to CCT020312, consistent with the notion that

this arrest is facilitated by pRB and its orthologues which in these

MEFs are inactivated as a consequence of SV40 transformation.

Instead they respond with increased S-phase accumulation (223n)

and apoptosis, as revealed by the increase of cells with a sub G1

DNA content (,2n). Neither of these responses were evident in

paired SV40-transformed PERK2/2 MEFs (Figure 7C, D).

Instead these PERK-modified cells were capable of moving into

G2 with identical efficacy, irrespective of whether CCT020312

was present or absent, indicative that cell cycle transit in these cells

is not affected by CCT020312. These results fully support the

notion that selective activation of EIF2AK3/PERK signalling is

the mode of action through which CCT020312 causes attenuation

of cell cycle transit and inhibition of proliferation.

Interaction of CCT020312 with paclitaxel
Recent work indicates a link between ER stress-mediated

EIF2AK3/PERK signalling and the cellular sensitivity to multiple

anticancer agents, including taxanes [39,40]. We therefore evaluated

if CCT020312 could enhance the sensitivity of cells to paclitaxel. We
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treated U-2OS human osteosarcoma cells, which do not induce

EIF2A phosphorylation in response to paclitaxel, and HCT116 colon

cancer cells, in which EIF2A phosphorylation increases upon

treatment with this drug (Figure 8A), with increasing concentrations

of paclitaxel, either alone or in combination with CCT020312.

Exposure of both these cell types to 2.5 mM CCT020312 resulted in a

clear augmentation of the paclitaxel-induced growth inhibition in U-

2OS cells but had no effect in HCT116 cells (Figure 8B). Fixed ratios

of paclitaxel and CCT020312 across a 25-fold range yielded

combination indices that were consistently less than one (,1) in U-

2OS, indicating a greater than additive interaction of these two

agents using median effect analysis [41]. In contrast, combination

indices of greater than one (.1) were obtained in HCT116 cells,

indicating a less than additive interaction between CCT020312 and

paclitaxel in these cells (Figure 8C and Figure S10). Experiments in

cells with taxane resistance due to increased multidrug resistance

(MDR1) P-glycoprotein expression did not reveal synergy between

CCT020312 and paclitaxel, nor did the ablation of p53, thought to

mediate apoptosis in HCT116 cells, cause cooperation (not shown).

This suggests that a selective complementation of EIF2AK3/PERK

signalling deficiency underlies the cooperation between CCT020312

and paclitaxel seen in U2-OS osteosarcoma cells. Thus in addition to

its ability to confer G1/S checkpoint activation and proliferation

control, CCT020312, or agents like it, may hold promise in

conferring sensitization of cancer cells in specific situations of

paclitaxel resistance.

Figure 6. CCT020312 does not induce full ER stress signalling. A) Schematic of unfolded protein response signalling. Response
biomarkers are indicated. B) UPR response marker expression in HT29 colon and MCF7 breast cancer cells. Cells were treated with
CCT020312 (CCT, 10 mM) or thapsigargin (Tg, 2 mM) as indicated and analysed by immunoblotting for CHOP/GADD153 and GRP78/BIP. C) UPR
response marker expression following CCT020312 dose escalation. HT29 cells were treated for 16 h. Lysates were analyzed as in B.
doi:10.1371/journal.pone.0028568.g006
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Discussion

We previously described a mechanism-based screening ap-

proach to isolate G1/S checkpoint activating agents [20]. Using

this approach we have identified several structurally unrelated

chemical series, including CCT020312, and report here the

mechanism of action by which this agent achieves checkpoint

activation in cells. Our analysis indicates that CCT020312

promotes EIF2A phosphorylation with the known consequence

of D-type cyclin depletion and a loss of ability to phosphorylate

pRB. Our results identify loss of cyclin D expression as a major

and early event in CCT020312-treated cells and show this, along

Figure 7. Effects of CCT020312 exposure on wild type and PERK KO MEFs. A) EIF2A phosphorylation. SV40-immortalised wild type (WT)
and PERK KO MEFs (PERK2/2) were treated with 10 mM CCT020312 (CCT), 2 mM thapsigargin (Tg) for the time indicated. Cell lysates were analysed
using P-S51 EIF2A and pan EIF2A selective antibody. The position of P-S51 EIF2A is indicated with an arrow beneath an unrelated, high molecular
weight, non-specific band (*). B) Signal quantification for data shown in A). Charts depict the background corrected signal for P-S51 EIF2A
relative to that of pan EIF2A in the same samples. Signals were quantified using Image J. C) Cell cycle response. MEFs were treated with 10 mM
CCT020312 or vehicle (DMSO) for 30 hrs and analysed for cell cycle distribution. Where indicated, Nocodazole (Noc) was added to the culture
medium at a concentration of 1 mg/ml for the final 16 hours. Raw propidium iodide profiles are shown. Cells were treated in parallel to those
analysed for A. D) Quantitative analysis of cell cycle distribution. Experiments were as described for C). Charts depict the percentage of cells
with DNA content as indicated, nocodazole was added where indicated. Results for two independently run experiments are shown.
doi:10.1371/journal.pone.0028568.g007
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with inhibition of cell cycle transit by CCT020312 is a

consequence of EIF2AK3/PERK signalling. Together these

results identify EIF2AK3/PERK signalling as the target mecha-

nism through which CCT020312 achieves G1/S checkpoint

activation, corroborating earlier evidence that link this signalling

pathway to the control of CDK4/6 activation in mammalian cells

[30].

EIF2AK3/PERK activation forms part of the UPR that arrests

cell proliferation following accumulation of unfolded proteins in

the ER. However UPR signalling involves other events in addition

to EIF2AK3/PERK activation, including membrane release and

activation of ATF6 and IRE1 [42] leading to activation of a

complex transcriptional response both independent of, and

collaborative with, EIF2AK3/PERK activation. Our analysis

indicates that CCT020312 does not induce responeses that ensue

from activation of IRE1 or ATF6, although it effectively stimulates

EIF2A phosphorylation and associated downstream signalling

linked to this event. Hence, our results show that CCT020312

does not elicit UPR, but that it acts selectively to instigate

proliferation inhibition through an EIF2A phosphorylation-

associated translation inhibition. While EIF2AK3/PERK activa-

tion is consistently seen with agents that disable ER function, these

agents classically trigger full UPR. To our knowledge agents with

selectivity for eliciting EIF2AK3/PERK signalling alone have not

been described previously.

While the precise way through which CCT020312 elicits

EIF2AK3/PERK signalling has not yet been elucidated, the

current knowledge as to how activation of this kinase is achieved

implies a narrow set of options. EIF2AK3/PERK auto-activates

through oligomerization-induced autophosphorylation [43,44].

Figure 8. Interaction of CCT020312 with paclitaxel. A) Paclitaxel-associated EIF2A phosphorylation in U-2OS and HCT116 cells. U-
2OS and HCT116 were exposed to 10 mM CCT020312 (CCT), DMSO or paclitaxel (taxol) for 4 hours. Cell lysates were analyzed by immunoblotting for
P-S51-EIF2A and tubulin. B) Proliferation inhibition by paclitaxel in the presence of CCT020312. Cells were treated with increasing amounts
(1–25 nM) of paclitaxel in the absence and presence of a fixed dose (2.5 mM) of CCT020312. Arrows denote proliferation inhibition in cells treated
with 2.5 mM CCT020312 only. Cell lines were as indicated. C) Multiple drugs effect analysis: U-2OS and HCT116 cells were treated with escalating
doses of paclitaxel, CCT020312 or their combination. Combination indices (CIs) for each dose are shown. The calculated mean CI and standard error is
indicated. ‘‘CI excl’’ assumes agents act by a competing, mutually exclusive mechanism of action, ‘‘CI no-exl. assumes agents act through distinct,
exclusive mechanisms of action [57].
doi:10.1371/journal.pone.0028568.g008
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Initiation of EIF2AK3/PERK oligmerization is thought to follow

from competition between unfolded ER protein clients and

EIF2AK3/PERK for the chaperone heat shock 70 kDa protein

5 (HSPA5)/GRP78/BIP, which associates with and prevents

oligomerization of the kinase. However, HSPA5/GRP78/BIP also

controls ATF6 and IRE1 [45], which according to our analysis are

not activated by CCT020312. Hence outright interference with

HSPA5/GRP78/BIP functioning cannot explain the mechanism

of action of CCT020312. More conceivable is a mode of action

whereby CCT020312 interacts with EIF2AK3/PERK, either

preventing the association of this kinase with HSPA5/GRP78/BIP

or promoting HSPA5/GRP78/BIP-resistant oligomerization. It is

also possible that CCT020312 prevents feedback regulation that

silences EIF2AK3/PERK signalling following activation by

spurious ER stress as part of normal cell homeostasis. Feedback

regulation during UPR involves enhanced production of protein

phosphatase 1 regulatory subunit 15A (PPP1R15A)/GADD34

consequent to ATF4 activation (see Figure 6A), which in turn

recruits the serine/threonine-protein phosphatase PP1 to dephos-

phorylate EIF2A [46]. A previous chemical biology approach

identified salubrinol as an inhibitor of PP1-mediated EIF2A

dephosphorylation. Like CCT020312, salubrinol provokes upre-

gulation of CHOP/GADD153, but does not initiate XBP1

splicing or GRP78/BIP production [47]. However, and in contrast

to CCT020312, salubrinol induces Ser51 phosphorylation of

EIF2A in EIF2AK3/PERK-negative backgrounds, indicating that

the mechanism of action of salubrinol and that of CCT020312 are

mechanistically distinct.

We demonstrate potent antiproliferative activity of CCT020312

at low mmolar concentrations, which is detectable in both p53

positive (HCT116) and p53 negative (HT29) human colon cancer

cells and remains considerable even under conditions of time-

limited exposure to the compound. The known consequences of

EIF2AK3/PERK activation are consistent with these observations.

While the initial result of EIF2AK3 activation is acute inhibition of

protein translation, leading to G1 restriction point activation and

arrest, prolonged activation is linked to loss of cell viability,

conceivably due to an inability to produce anti-apoptotic proteins,

which many cancer cells rely upon [48,49]. The well-recognized

dependence of cancer cells on anti-apoptotic functions may

constitute a cancer-selective therapeutic window for the treatment

with agents such as CCT020312. Recent work has implied the

involvement of ER stress signalling in mediating the potency of

several unrelated cytotoxic agents including, paclitaxel fluorouracil

and cisplatin [39], as well as a supporting role of EIF2A

phosphorylation in the response to anticancer agents targeting the

ubiquitin/proteasome pathway [50,51], indicating added utility for

agents such as CCT020312 that are able to activate this form of

signalling. In agreement with this hypothesis, we have demonstrated

the ability of CCT020312 to sensitize cells that lack paclitaxel-

mediated EIF2A phosphorylation response to the cytotoxic effects of

paclitaxel. Apart from its intrinsic antiproliferative mode of action,

CCT020312 and agents like it may be suitable for use in

combination with paclitaxel and potentially other anticancer agents.

Furthermore, EIF2AK3/PERK signalling has been found to

alleviate beta-amyloid associated neurotoxicity [52] and reduce

brainstem motor neurone death in a murine model of sleep apnea

[53], suggesting that EIF2AK3/PERK pathway activation could be

a potential target for therapeutic fields other than cancer, including

conditions of hypoxia-associated neurotoxicity and neurodegener-

ative disorders such as Alzheimers disease. CCT020312 could serve

as a mechanistic tool for proof-of-concept explorative experimen-

tation in these various contexts and may provide a candidate for

chemical optimization.

Materials and Methods

Cell culture and agent treatment
Cell lines were obtained from ATCC and maintained in

DMEM or RPMI (GibcoBRl) containing 10% FCS. Primary

MEFs were isolated from day 13.5 embryos. T antigen

immortalised PERK +/+ and 2/2 MEFs were kindly provided

by the Ron laboratory. MEFs were maintained in DMEM

Supplemented with 10% FCS, 5 mM glutamine, antibiotics, 16
MEM non-essential amino acids and 55 mM 2-mercaptoethanol.

Unless stated otherwise cells were seeded at subconfluent density

and cultured for 24 h prior to agent treatment. CCT020312 was

dissolved in DMSO at a concentration of 10 mM and stored at

270uC. Thapsigargin (Sigma) was dissolved in DMSO at a

concentration of 2 mM and used at the indicated concentrations

to induce EIF2AK2/PERK-mediated EIF2A phosphorylation.

Poly (I:C) and sodium arsenite (NaAS2O3, Sigma, aqueous

solution) were employed at the indicated concentrations to induce

EIF2A phosphorylation by EIF2AK2/PKR and EIF2AK1/HRI,

respectively. Hemin chloride (Sigma) was dissolved in DMSO and

used at the indicated concentrations to block EIF2AK1/HRI

activity in cells. All agents were made up in growth medium, 10%

FCS at their respective working concentrations immediately prior

to addition to the adherent cells. To monitor cyclin D1 protein

stability cells were treated with 20 mg/ml cycloheximide in the

absence or presence of CCT020312.

Compounds and Compound screening
The Cell-based immunoassay for the detection of pRB-P-

Ser608 has been described [20]. The assay used a mouse

monoclonal antibody that recognizes the phosphorylated form of

Ser 608 on pRb on a fixed monolayer of cells seeded in a 96 well

format in combination with a Europium-labelled secondary

antibody for signal detection. Signal detection was by a time-

resolved fluorescence. The Cancer Therapeutics Unit internal

compound collection (.63.000 compounds), comprising a selec-

tion of diverse small molecules either purchased from commercial

suppliers, archived in-house or obtained through Cancer Research

UK was screened in a 96 well format using conditions essentially

as described in [20]. Compounds were used at 10 mM with assay

endpoint at 24 h following compound addition. To identify

candidate hits, data were filtered for reduction of signal by 50%

or greater compared to the means of quadruple DMSO controls

run in parallel in the same plate. Values were normalized to

protein retained in the wells at the assay endpoint. All plates

passed the quality control criteria of Z factor .0.4 [54]. Hits were

confirmed using the screening assay and positives further validated

by immunoblot using pan pRB antibody (14001A, Pharmingen)

and antibody selective for Ser608 unphosphoryated pRB (14441A,

Pharmingen). Preparation of CCT020312 and generation of

analogues is described below. Structural integrity and purity of

compounds including the original hit matter was established and

confirmed using mass spectrometry.

Cell lysate preparation, immunoblot analysis and
antibodies

Cell lysates for immunoblot analysis were prepared in 50 mM

Hepes-KOH pH 7.4, 250 mM NaCl, 5 mM EDTA, 0.5% Triton,

10 mM-glycerophosphate, 10 mM NaF, 1 mM NaVO3, 1 mM

DTT, 1 mM PMSF, 1% aprotinin, 2.5 mg/ml leupeptin). Lysates

were cleared by centrifugation at 10,0006 g for 10 minutes at

4uC. Protein content was estimated by Bradford assay (Bio-Rad).

Immunoblots were performed using standard procedures. Protein

antibody complex was detected using horseradish peroxidase
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conjugated secondary antibody, followed by enhanced chemilu-

minescence ECL according to the manufacturer’s instructions (GE

healthcare). Primary antibodies used were; anti pRB-phospho-

Ser608 antibody (P-S608-pRB, Barrie et al. 2003) pan pRB

(14001A, Pharmingen), non-phospho-Ser608 pRB (NP-pRB,

14441A, Pharmingen), Cyclin D1 (554181, Pharmingen), anti

pRB Phopsho-Ser780 (P-S780-pRB, a gift from Onyx Pharma-

ceuticals), anti-pRB-phospho-Ser807/811 (P-S807/811-pRB, Sig-

ma), Cyclin D3 (C-16, Santa Cruz), Cyclin E (14591c, Pharmin-

gen), Cyclin A (BF683, Santa Cruz), CDK4 (H-22, Santa Cruz),

CDK6 (C-21 Santa Cruz), CDK2 (M2, Santa Cruz), p27KIP1

(C19, Santa Cruz), phospho-Ser473 AKT (Cell Signalling), AKT

(Cell Signalling), anti EIF2A (Cell Signaling), phospho-Ser51

EIF2A (P-S51-EIF2A, Cell Signalling), HSP70 (W27, Neomar-

kers), GADD153/CHOP (F-168, Santa Cruz), GRP78/BIP (H-

129, Santa Cruz), EIF2AK2/PKR (Cell Signalling) and b-tubulin

(Neomarkers).

siRNA-mediated gene silencing
Cells were transfected with siRNA oligonucleotide at 20 nM

using the HiPerFect lipid reagent (Qiagen) as per the manufac-

turer’s published guidelines for the transfection of adherent cell

lines. Oligonucleotides used for EIF2AK3/PERK knockdown

were 59-uaa acc guu aua cag uuu gtg-39 (EIF2AK3-1) and 59-uua

acu ucu cgc auu acc utt-39 (EIF2AK3-2). For EIF2AK2/PKR the

Dharmacon Smartpool (M-003527-00) was used.

Generation of recombinant cyclin/CDK enzymes and
phosphorylation activity assay

Kinases were produced in Spodoptera frugiperda (SF9) insect

cells. Cells were infected with pairs of cyclin and CDK-encoding

baculoviruses, and kinases produced as recently described [55].

Purified baculovirus-produced Cyclin B/CDK1 was purchased

from Upstate Biotechnology. Purified baculorvirus-produced Cyclin

D1/CDK4 was a gift from Onyx Pharmaceuticals. Test tube

reactions were assembled containing 50 mM HEPES-KOH,

pH 7.4, 10 mM MgCl2, 10 mM MnCl2, 1 mM EDTA, 10 mM

B-glycerophosphate, 0.1 mM protein kinase A inhibitor, 1 mM

DTT, 1 mM PMSF, 1% aprotinin, 2.5 mg/ml leupeptin, with

10 mM ATP and 0.5 mCi [gamma 232P] ATP and 10 mg/ml

Gluthathione-S-transferase (GST) fused pRB fragment, aa 792–928

(GST-pRB-ct) as the substrate. Compounds were added to the

reaction prior to enzyme addition. Final reaction volumes were

50 ml and the reaction time 15 min at 30uC. Reactions were

stopped using SDS containing sample buffer and analyzed using

denaturing polyacrylamide gel electrophoresis with subsequent

autoradiography. For plate-based kinase activity assays ImmulonR

plates (Thermo Scientific) were coated with 1 mg per well of GST-

pRB-ct in PBS. Plates were washed 3 times in PBS, 0.1% Tween 20

prior to use. Reactions were assembled containing 50 mM HEPES

pH 7.4, 10 mM NaF, 1 mM sodium orthovanadate, 1 mM DTT,

10% glycerol, 25 mM ATP, 10 mM MgCl2 and enzyme. Com-

pounds were added prior to addition of enzyme. Reactions were

carried out for a set time at 30uC and stopped by adding 50 ml cold

0.2 M EDTA. Substrate phosphorylation was quantified using

phosphorylation-selective anti-pRB antibody detection involving

europium labelled secondary antibody (Perkin Elmer). Phopsho-

Ser780 pRB was used for quantification of CDK4 activity, phospho-

Ser807/811 pRB for the quantification of CDK1 activity.

Cell cycle analysis and proliferation assays
Cell cycle analysis was performed using standard procedures

and as described [56]. Propidium Iodide (PI) staining was used to

determine the DNA content and Bromodeoxyuridine (BrdU) pulse

labelling to assess DNA synthesis activity. The proliferation

activity of cells was quantified using a standard sulphorhodamine

B (SRB) colorimetric assay in a 96-well assay format. GI50 values

were calculated by non-linear regression using the Prism V4.0

software. Multiple drug effect analysis was performed as described

[41]. Combination index (CI) values were derived from param-

eters of the median effects plots. Statistical tests (unpaired, two-tail

Student t test) were used to determine whether the mean CI values

at multiple concentrations were significantly different from CI = 1.

RNA preparation and transcript analysis
RNA for microarray analysis was generated by growing

0.76106 HT29 cells in 20 cm tissue culture dishes. After 48 h

growth cells were exposed to either 7 mM CCT020312, 220 mg/

ml Poly (I:C) or 2 mM thapsigargin for various times. Floating and

adherent cells for each time point were pooled and processed.

Total RNA was isolated using RNACell (Applied Biossytems) on

the ABI 6100 nucleic acid prepstation, following the manufactur-

er’s instructions. The CyScribe Post-Labeling Kit (GE Healthcare)

was used to label 5 mg of total RNA according to the

manufacturer’s recommendations. Reference samples were la-

belled with cy5 and the drug-treated test samples with cy3.

Labelled test and reference samples were mixed and hybridised to

the CRUK Human Whole Genome-wide Array v1.0.0 printed on

type 7* slides (GE Healthcare). Arrays were hybridised for 3 days

at 42uC.

The cy3 and cy5 signals were detected and visualized using a

GenePix 4000B scanner and software (Axon Instruments, Foster

City, CA, USA). Spots were curated and filtered for quality by

automated spot flagging. Spots were assigned a good flag if the

signal intensity was 1 standard deviation above background in

75% of the pixels in either channel, with a signal saturation of less

then 3% in either channel. The output of the automated flagging

was inspected visually and adjusted when necessary. The GenePix

raw data files were analysed in Genespring (Agilent Technologies)

using the ‘‘per–spot’’ and ‘‘per-chip’’ intensity–dependent Lowess

normalization. A Lowess curve was fit through the log-intensity

versus log-ratio plot. 20% of the data was used to calculate the

Lowess fit at each point. This curve was used to adjust the control

value for each measurement. Only genes that fulfilled the good flag

criteria in at least 67% of the samples were used for analysis.

Replicate samples were averaged. Genes were considered changed

when a 1.5 fold change was observed relative to untreated controls

for 2 or more time points. Genes that were modified by DMSO

treatment were removed from the analysis. Hierarchical clustering

was performed using Euclidian distance as the metric.

RNA for quantitative PCR analysis was prepared from cells in

6-well plates using RNeasy (Qiagen) assuming 16106 cells/well

and using the manufacturer’s ‘Animal Cells Spin’ protocol and

QIAshredder option. Quantitative PCR was performed by a 2-

step protocol involving a round of first strand cDNA synthesis and

PCR amplification in the presence of SYBR green (Qiagen).

Ready-To-Go T-Primed First-Strand reactions (GE Healthcare)

were used for first-stand synthesis. The Quantitect SYBR Green

PCR kit and Quantitect validated primer pairs for EIF2AK3/

PERK and GAPDH and Cyclin D1 (Qiagen) were employed to

quantify these transcripts in first-strand samples using an ABI

Prism 7700.

Northern blots were performed using standard formaldhyde

agarose gel electrophoresis. Probes for hybridization were

prepared by PCR and labelled using the BioPrime DNA Labelling

System (Invitrogen). Hybridizatrion and detection followed the

manufactorer’s instructions.
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CCT020312 synthesis and analogues
The synthetic route for CCT020312 and analogues is provided

in Supplemental Methods and Materials S1.

Supporting Information

Figure S1 Effect of CCT020312 on cyclin/CDK activity
in vitro. A), B) ELISA-based activity assay. Enzyme activity

was determined using 96 well microtitre plates coated with 1 mg

per well of GST-pRB-ct. Reactions contained CCT020312 or the

pan CDK inhibitor flavopiridol [6], as indicated. CDK4 activity

was detected using rabbit anti-pRB-P-Ser780 (1:3000), CDK1

activity was detected using rabbit anti-pRB-P-Ser807/811 (Sigma

1:5000) followed by europium-labelled anti-rabbit 2u antibody

(Perkin Elmer, Life Sciences, 0.1 mg/ml). Signals were detected by

time-resolved fluorescence. Curve fit for representative assay (A).

Calculated IC50 average, n = 3 (B). C) In vitro phosphorylation

assays. Baculovirus-infected SF9 lysates directing the expression of

CyclinD1/CDK4, Cyclin E/CDK2 or Cyclin A/CDK2 com-

plexes were added to a kinase reaction containing 0.5 mg GST-

pRB-ct as substrate and 10 mM ATP. CCT020312 was added at

the concentrations indicated. K4 and K2 indicate reactions run in

the presence of catalytic subunits CDK4 or CDK2 only. The

CDK1/2 selective inhibitor R-roscovitine was included as a

positive control. Reactions were analysed by SDS gel electropho-

resis followed by autoradiography. Reference. 6. Senderowicz

AM (1999) Flavopiridol: the first cyclin-dependent kinase inhibitor

in human clinical trials. Invest New Drugs 17: 313–320.

(TIF)

Figure S2 Concentration-response relationship for in-
hibition of pRB phosphorylation and proliferation. A)
Concentration-response curve for reduction of pRB
phosphorylation in HT29 and HCT116 colorectal carci-
noma cells. pRB phosphorylation was quantified using im-

munoadsorbance as employed for the primary screen. Signals

normalized to protein content in respective wells are shown. Error

bars represent the standard deviation based on three replicate

experiments. B) Concentration-response curve for growth
inhibition in HT29 and HCT116 colorectal carcinoma
cells. Proliferation was quantified 96 hours post compound

addition using a sulphorhodamine B based colorimetric assay.

C) Growth inhibition following pulse-treatment of cells.
Cells were treated for the time indicated after which compound

containing medium was removed. Proliferation was quantified

96 hours post treatment using a sulphorhodamine B based

colorimetric assay. GI50 calculations were performed by non-

linear regression using the Prism V4.0 software.

(TIF)

Figure S3 Effects of CCT020312 on expression of G1/S
CDKs and their regulators. A) Changes in biomarker
expression over 24 h. HT29 cells were treated with 10 mM

CCT020312 for the periods indicated. Lysates were prepared at

each time point and analysed as in FIG. 2E. B) Loss of cyclin
D1 is widely detected in cell lines treated with
CCT020312. Cell lines as indicated were treated with 10 mM

CCT020312 (+) or vehicle (2) for 6 h. Lysates were analyzed for

cyclin D1 expression by immunoblot. Membrane staining with

amido black (A, D) or probing for tubulin (B, C) was used to reveal

loading.

(TIF)

Figure S4 Effect of CCT020312 on cyclin D1 turnover
and mRNA accumulation. A) CCT020312 does not affect
Cyclin D1 stability. MCF-7 were treated with 20 mg/ml

cycloheximide in combination with 10 mM CCT020312, as

indicated. Lysates were analysed by Immunoblotting using anti

Cyclin D1 and tubulin. A9) quantification of Cyclin D decay using

cy-5 conjugated secondary antibody. Signals were quantified by

PhosphoImager. B) CCT020312 does not trigger Thr286
phosphorylation of Cyclin D1. MCF-7 cells were treated with

10 mM CCT020312 (+) for the times indicated. Lysates were

adjusted for protein content and analysed undiluted or diluted 1:2

by immunoblotting blotting using antibodies as indicated. MCF-7

cells were treated with 100 mM etoposide a known inducer of

cyclin D-Thr286 phosphorylation (B). C), D) Effect of
CCT020312 on cyclin D1 steady mRNA state levels.
MCF-7 cells were treated with 10 mM CCT020312 for the time

indicated. RNA was analysed by SYBR green assisted q PCR (C),

or Northern blot (D). Error bars in C represent the means of four

parallel technical replicates. qPCR reactions were evaluated using

the standard curve method. GAPDH was used as a reference for

normalization.

(TIF)

Figure S5 EIF2A phosphorylation following CCT020312
treatment. Signal quantification for results shown in Figure 4A.

Electronic scans were produced from primary autoradiograms and

analysed using ImageJ (http://rsbweb.nih.gov/ij/). Charts depict

background corrected signal quantities for P-S51 EIF2A relative to

the signal quantities for pan EIF2A in the same samples.

(TIF)

Figure S6 Effect of EIF2AK3/PERK ablation on
CCT020312-mediated EIF2A phosphorylation and loss
of cyclin D and pRB phosphorylation. A) Signal quanti-
fication for results shown in Figure 5B. Charts depict

background corrected signal for P-S51 EIF2A relative to that of

pan EIF2A in the same samples. B) Signal quantification for
results shown in Figure 5C. Charts depict background

corrected raw signal quantities for Cyc D1, nonphosphorylated

RB and pan RB. Quantification was performed using electronic

scans produced from primary autoradiograms. Data were analysed

using ImageJ (http://rsbweb.nih.gov/ij/).

(TIF)

Figure S7 Impact of EIF2AK inhibition on CCT020312
signalling. A) EIF2AK2/PKR ablation fails to affect
CCT020312 mediated EIF2A phosphorylation. U2-OS

human osteosarcoma cells were transfected with 20nM siRNA

targeting PKR, or a control. Following 72 hours of RNAi cells

were treated with 10 mM CCT020312 or DMSO for the indicated

times, or with 500 mg/ml Poly (I:C). Cells were harvested and

lysates analysed by immunoblotting using antibodies as indicated.

B) EIF2AK1/HRI inhibition fails to inhibit CCT020312-
mediated EIF2A phosphorylation. U2-OS cells were treated

with 0, 40 or 80 mm of the EIF2AK1/HRI inhibitor hemin for

1 h. Hemin-containing media was replaced with media containing

10 mM CCT020312 or 200 mM sodium arsenide (AS) or DMSO.

Cells were lysed after 30 min and lysates analysed by immuno-

blotting as indicated. (B) Regulation of genes responsive to
integral stress response signalling. mRNA abundance for

CHOP/GADD153 and WARS, previously shown to depend on

stress signalling involving EIF2A phoshorylation, as determined

from cDNA data on thapsigargin and CCT020312 treated cells.

Expression values shown are relative to DMSO treated control

samples. mRNA expression data were extracted from the

microarray dataset. Normalized data are expressed as a ratio of

treated cells over untreated control cells. C) Activation of EIF2A
but not UPR selective signalling in mouse embryo
fibroblasts (MEFs). Primary MEFs were treated with 10 mM
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CCT020312 or 2 mM thapsigargin for 8 hours and analysed by

immunoblot using antibodies to detect markers of EIF2AK (ATF4

and CHOP) and IRE involving (XBP1s) signalling.

(TIF)

Figure S8 Absence of detectable XBP1 splicing in
CCT020312 treated human cancer cells. A) PCR based
detection of XBP1 splicing. HT29 or HCT116 cells were

treated with 10 mM CCT020312 (CCT) or 2 mM thapsigargin

(Tg) for the time indicated. Alternative splicing of XBP1 was

detected in total RNA extracts from these cells by reverse

transcription PCR. B) Detection of EIF2A phosphorylation.
Extracts for protein analysis were generated in parallel to RNA

preparations analysed for A. C) Signal quantification for
results shown in B). Charts depict background corrected P-S51

EIF2A after normalization against pan EIF2A. Signals were

quantified as for supplemental Figure 5 using Image J.

(TIF)

Figure S9 CCT020312 fails to trigger unfolded protein
response selective signalling. A) Regulation of chaper-
one encoding genes activated downstream of XBP1.
mRNA abundance for GRP94/HSP90B1 and DNAJ3/p58PK,

previously shown to rely on XBP1 signalling [7] as determined

from cDNA microarray data on thapsigargin and CCT020312

treated cells. Expression values shown are relative to DMSO

treated control samples. mRNA expression data were extracted

from the microarray dataset. Normalized data are expressed as a

ratio of treated cells over untreated control cells. (B) Regulation
of genes responsive to integral stress response signal-
ling. mRNA abundance for CHOP/GADD153 and WARS,

previously shown to depend on stress signalling involving EIF2A

phoshorylation [8], as determined from cDNA data on thapsi-

gargin and CCT020312 treated cells. Expression values shown are

relative to DMSO treated control samples. mRNA expression data

were extracted from the microarray dataset. Normalized data are

expressed as a ratio of treated cells over untreated control cells. C)
Activation of EIF2A but not UPR selective signalling in
mouse embryo fibroblasts (MEFs). Primary MEFs were

treated with 10 mM CCT020312 or 2 mM thapsigargin for

8 hours and analysed by immunoblot using antibodies to detect

markers of EIF2AK (ATF4 and CHOP) and IRE involving

(XBP1s) signalling. References. 7. Lee AH, Iwakoshi NN,

Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic

reticulum resident chaperone genes in the unfolded protein

response. Mol Cell Biol 23: 7448–7459. 8. Mori K (2009)

Signalling pathways in the unfolded protein response: develop-

ment from yeast to mammals. J Biochem 146: 743–750.

(TIF)

Figure S10 Interaction of CCT020312 and paclitaxel. A,

B) Cell proliferation activity of cells following treatment with

paclitaxel, CCT020312 or the combination thereof, as determined

using a 96 hour sulphorhodamine B (SRB) colorimetric assay run

in a 96-well assay format. Agent concentrations were as indicated.

Data were used to calculate combination indices for Figure 8C.

(TIF)

Table S1 Prediction of small molecule agents connected
to the mechanism of action of CCT020312. The top ten hits

are shown. Analysis output based on cmap 02 (http://www.

broadinstitute.org/cmap/http://www.broadinstitute.org/cmap/).

(DOC)

Results S1 Assessment of hit matter.

(DOC)

Methods and Materials S1 XBP1 splicing and General

Methods for the preparation of compounds.

(DOC)
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