144 research outputs found

    Finding Ideal Parameters for Recycled Material Fused Particle Fabrication-Based 3D Printing Using an Open Source Software Implementation of Particle Swarm Optimization

    Get PDF
    As additive manufacturing rapidly expands the number of materials including waste plastics and composites, there is an urgent need to reduce the experimental time needed to identify optimized printing parameters for novel materials. Computational intelligence (CI) in general and particle swarm optimization (PSO) algorithms in particular have been shown to accelerate finding optimal printing parameters. Unfortunately, the implementation of CI has been prohibitively complex for noncomputer scientists. To overcome these limitations, this article develops, tests, and validates PSO Experimenter, an easy-to-use open-source platform based around the PSO algorithm and applies it to optimizing recycled materials. Specifically, PSO Experimenter is used to find optimal printing parameters for a relatively unexplored potential distributed recycling and additive manufacturing (DRAM) material that is widely available: low-density polyethylene (LDPE). LDPE has been used to make filament, but in this study for the first time it was used in the open source fused particle fabrication/fused granular fabrication system. PSO Experimenter successfully identified functional printing parameters for this challenging-to-print waste plastic. The results indicate that PSO Experimenter can provide 97% reduction in research time for 3D printing parameter optimization. It is concluded that the PSO Experimenter is a user-friendly and effective free software for finding ideal parameters for the burgeoning challenge of DRAM as well as a wide range of other fields and processes

    Establishment of Human Papillomavirus Infection Requires Cell Cycle Progression

    Get PDF
    Human papillomaviruses (HPVs) are DNA viruses associated with major human cancers. As such there is a strong interest in developing new means, such as vaccines and microbicides, to prevent HPV infections. Developing the latter requires a better understanding of the infectious life cycle of HPVs. The HPV infectious life cycle is closely linked to the differentiation state of the stratified epithelium it infects, with progeny virus only made in the terminally differentiating suprabasal compartment. It has long been recognized that HPV must first establish its infection within the basal layer of stratified epithelium, but why this is the case has not been understood. In part this restriction might reflect specificity of expression of entry receptors. However, this hypothesis could not fully explain the differentiation restriction of HPV infection, since many cell types can be infected with HPVs in monolayer cell culture. Here, we used chemical biology approaches to reveal that cell cycle progression through mitosis is critical for HPV infection. Using infectious HPV16 particles containing the intact viral genome, G1-synchronized human keratinocytes as hosts, and early viral gene expression as a readout for infection, we learned that the recipient cell must enter M phase (mitosis) for HPV infection to take place. Late M phase inhibitors had no effect on infection, whereas G1, S, G2, and early M phase cell cycle inhibitors efficiently prevented infection. We conclude that host cells need to pass through early prophase for successful onset of transcription of the HPV encapsidated genes. These findings provide one reason why HPVs initially establish infections in the basal compartment of stratified epithelia. Only this compartment of the epithelium contains cells progressing through the cell cycle, and therefore it is only in these cells that HPVs can establish their infection. By defining a major condition for cell susceptibility to HPV infection, these results also have potentially important implications for HPV control

    Open source arc analyzer: Multi-sensor monitoring of wire arc additive manufacturing

    Get PDF
    Low-cost high-resolution metal 3-D printing remains elusive for the scientific community. Low-cost gas metal arc wire (GMAW)-based 3-D printing enables wire arc additive manufacturing (WAAM) for near net shape applications, but has limited resolution due to the complexities of the arcing process. To begin to monitor and thus control these complexities, the initial designs of the open source GMAW 3-D printer have evolved to include current and voltage monitoring. Building on this prior work, in this study, the design, fabrication and use of the open source arc analyzer is described. The arc analyzer is a multi-sensor monitoring system for quantifying the processing during WAAM, which includes voltage, current, sound, light intensity, radio frequency, and temperature data outputs. The open source arc analyzer is tested here on aluminum WAAM by varying wire feed rate and measuring the resultant changes in the sensor data. Visual inspection and microstructural analysis of the printed samples looking for the presence of porosity are used as the physical indicators of quality. The value of the sensors was assessed and the most impactful sensors were found to be the light and radio frequency sensors, which showed arc extinction events and a characteristic “good weld” peak frequency

    RepRapable automated open source bag valve mask-based ventilator

    Get PDF
    This study describes the development of an automated bag valve mask (BVM) compression system, which, during acute shortages and supply chain disruptions can serve as a temporary emergency ventilator. The resuscitation system is based on the Arduino controller with a real-time operating system installed on a largely RepRap 3-D printable parametric component-based structure. The cost of the system is under $170, which makes it affordable for replication by makers around the world. The device provides a controlled breathing mode with tidal volumes from 100 to 800 milliliters, breathing rates from 5 to 40 breaths/minute, and inspiratory-to-expiratory ratio from 1:1 to 1:4. The system is designed for reliability and scalability of measurement circuits through the use of the serial peripheral interface and has the ability to connect additional hardware due to the object-oriented algorithmic approach. Experimental results demonstrate repeatability and accuracy exceeding human capabilities in BVM-based manual ventilation. Future work is necessary to further develop and test the system to make it acceptable for deployment outside of emergencies in clinical environments, however, the nature of the design is such that desired features are relatively easy to add with the test using protocols and parametric design files provided

    Tephrochronology

    Get PDF
    Tephrochronology is the use of primary, characterized tephras or cryptotephras as chronostratigraphic marker beds to connect and synchronize geological, paleoenvironmental, or archaeological sequences or events, or soils/paleosols, and, uniquely, to transfer relative or numerical ages or dates to them using stratigraphic and age information together with mineralogical and geochemical compositional data, especially from individual glass-shard analyses, obtained for the tephra/cryptotephra deposits. To function as an age-equivalent correlation and chronostratigraphic dating tool, tephrochronology may be undertaken in three steps: (i) mapping and describing tephras and determining their stratigraphic relationships, (ii) characterizing tephras or cryptotephras in the laboratory, and (iii) dating them using a wide range of geochronological methods. Tephrochronology is also an important tool in volcanology, informing studies on volcanic petrology, volcano eruption histories and hazards, and volcano-climate forcing. Although limitations and challenges remain, multidisciplinary applications of tephrochronology continue to grow markedly

    Sensitivity and specificity of point-of-care circulating Cathodic antigen test before and after praziquantel treatment in diagnosing Schistosoma mansoni infection in adult population co-infected with human immunodeficiency virus-1, North-Western Tanzania.

    Get PDF
    BACKGROUND: The effect of Human Immunodeficiency Virus-1 (HIV-1) on CD4+ Th2 cells is hypothesized to affect parasitological diagnosis of Schistosoma mansoni using Kato Katz technique. Thus, the use of more sensitive technique such as Point-of-Care Circulating Cathodic Antigen (POC-CCA) test is recommended. However, the sensitivity of this diagnostic test in diagnosing S.mansoni infection and the usefulness of it in monitoring efficacy of praziquantel drug in presence of HIV-1 co-infection remains inconclusive. The Primary objective of the present study was to assess accuracy of the POC-CCA test in diagnosing S.mansoni infection before and after praziquantel treatment in adult population co-infected with HIV -1. METHODS: A prospective longitudinal study was conducted among individuals aged 15-55 years at Igalagala village, north-western Tanzania. At baseline and 4 weeks after treatment, a single stool and urine samples were collected from each participants. Kato Katz (KK) technique and Point-of-Care Circulating Cathodic Antigen tests were used for diagnosis of Schistosoma mansoni. RESULTS: At baseline, based on KK and POC-CCA, the prevalence of S.mansoni was 57.8% (95%CI: 52.9-62.4) and 87.5% (95%CI: 83.9-90.4). Based on KK technique and POC-CCA test, 3.6% and 5.7% of the study participants were co-infected with S.mansoni and HIV-1. At baseline, in the general population, the sensitivities of POC-CCA test using KK technique and combine gold standard were 96.3%(95%CI: 93.1-98.3) and 97.6%(95%CI:95.5-98.9) respectively. In the HIV-1 seropositive group, at baseline, the sensitivities of POC-CCA test using KK technique and combined gold standards, were 93.3%(95%CI:68.1-99.8) and 96%(95CI%:79.6-99.9). Four weeks after treatment, in general population, the sensitivities of POC-CCA test using KK technique and combined gold standards were 47.8%(95%CI:26.8-69.4) and 84.4%(95%CI:74.4-91.7). In the HIV-1 seropositive group, using KK technique, the sensitivity was 100% (95%CI:2.5-100). CONCLUSION: The sensitivity of POC-CCA in diagnosing S.mansoni infection was higher than KK technique in adult individuals likely to have low infection intensity and co-infected with HIV-1. However, its sensitivity decreases following praziquantel treatment but remained higher than Kato Katz technique. If the goal of the post-treatment is to identify uncured individuals, then POC-CCA test offers the best choice

    Shoot for the Stars? Predicting the Recruitment of Prestigious Directors at Newly Public Firms

    Get PDF

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    The Global Burden of Diseases, Injuries and Risk Factors 2017 includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. METHODS: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting
    corecore