124 research outputs found

    Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite

    Get PDF
    The inelastic electron tunneling spectrum (IETS)of highly oriented pyrolitic graphite (HOPG) has been measured with scanning tunneling spectroscopy (STS) at 6K. The observed spectral features are in very good agreement with the vibrational density of states (vDOS) of graphite calculated from first principles. We discuss the enhancement of certain phonon modes by phonon-assisted tunneling in STS based on the restrictions imposed by the electronic structure of graphite. We also demonstrate for the first time the local excitation of surface-plasmons in IETS which are detected at an energy of 40 meV.Comment: PRB rapid communication, submitte

    Pentagonal nanowires: a first-principles study of atomic and electronic structure

    Full text link
    We performed an extensive first-principles study of nanowires in various pentagonal structures by using pseudopotential plane wave method within the density functional theory. Our results show that nanowires of different types of elements, such as alkali, simple, transition and noble metals and inert gas atoms, have a stable structure made from staggered pentagons with a linear chain perpendicular to the planes of the pentagons and passing through their centers. This structure exhibits bond angles close to those in the icosahedral structure. However, silicon is found to be energetically more favorable in the eclipsed pentagonal structure. These quasi one dimensional pentagonal nanowires have higher cohesive energies than many other one dimensional structures and hence may be realized experimentally. The effect of magnetic state are examined by spin-polarized calculations. The origin of the stability are discussed by examining optimized structural parameters, charge density and electronic band structure, and by using analysis based on the empirical Lennard-Jones type interaction. Electronic band structure of pentagonal wires of different elements are discussed and their effects on quantum ballistic conductance are mentioned. It is found that the pentagonal wire of silicon exhibits metallic band structure.Comment: 4 figures, accepted for publication in Phys. Rev.

    Vero Cytotoxin–Producing Escherichia coli O157 Gastroenteritis in Farm Visitors, North Wales

    Get PDF
    An outbreak of Vero cytotoxin–producing Escherichia coli O157 (VTEC O157) gastroenteritis in visitors to an open farm in North Wales resulted in 17 primary and 7 secondary cases of illness. E. coli O157 Vero cytotoxin type 2, phage type 2 was isolated from 23 human cases and environmental animal fecal samples. A case-control study of 16 primary case-patients and 36 controls (all children) showed a significant association with attendance on the 2nd day of a festival, eating ice cream or cotton candy (candy floss), and contact with cows or goats. On multivariable analysis, only the association between illness and ice cream (odds ratio [OR]=11.99, 95% confidence interval [CI] 1.04 to 137.76) and cotton candy (OR=51.90, 95% CI 2.77 to 970.67) remained significant. In addition to supervised handwashing, we recommend that foods on open farms only be eaten in dedicated clean areas and that sticky foods be discouraged

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Clinical characteristics and complications of rotavirus gastroenteritis in children in east London: A retrospective case-control study.

    Get PDF
    BACKGROUND: Rotavirus is the leading cause of acute gastroenteritis in children and is associated with neurological complications such as seizures and encephalopathy. The aim of this study was to investigate the presentation and complications of rotavirus compared to non-rotavirus gastroenteritis in UK children. METHODS: This was a retrospective, case-control, hospital-based study conducted at three sites in east London, UK. Cases were children aged 1 month to 16 years diagnosed with acute gastroenteritis between 1 June 2011 and 31 December 2013, in whom stool virology investigations confirmed presence of rotavirus by PCR. They were matched by age, gender and month of presentation to controls with rotavirus-negative gastroenteritis. RESULTS: Data were collected from 116 children (50 cases and 66 controls). Children with rotavirus gastroenteritis tended to present more frequently with metabolic acidosis (pH 7.30 vs 7.37, P = 0.011) and fever (74% versus 46%; P = 0.005) and were more likely to require hospitalisation compared to children with non-rotavirus gastroenteritis (93% versus 73%; P = 0.019). Neurological complications were the most common extra-intestinal manifestations, but did not differ significantly between children with rotavirus-positive gastroenteritis (RPG) and rotavirus-negative gastroenteritis (RNG) (24% versus 15%, respectively; P = 0.24). Encephalopathy occurred only in children with rotavirus infection (n = 3, 6%). CONCLUSION: Rotavirus causes longer and more severe disease compared to other viral pathogens. Seizures and milder neurological signs were surprisingly common and associated with multiple pathogens, but encephalopathy occurred only in children with rotavirus gastroenteritis. Rotavirus vaccination may reduce seizures and presentation to hospital, but vaccines against other pathogens causing gastroenteritis are required.AJP receives funding from the Wellcome Trust (grant 108065/Z/15/Z)

    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals

    Get PDF
    J. Kaprio, S. Ripatti ja M.-L. Lokki työryhmien jäseniä.Peer reviewe

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    The Physics of the B Factories

    Get PDF
    corecore