971 research outputs found

    Mathematical model of composite fibre-glass aramide-wired cord rheological properties

    Get PDF
    This paper describes the rheological properties of composite fibre-glass aramide-wired cords which, in its turn, are applied in large-sized structures for space systems. Based on experimental data a new mathematical model describing creeping and relaxation of composite cords is proposed. This model defines the operation time of the composite cords to be 15 years

    Calculation method for cable-beam shell structures

    Get PDF
    This paper presents a calculation method suitable for cable-beam shell structures. It is based on both nonlinear finite element and force density methods. The main idea is to define the solution sequence for stress - strain state problem of above mentioned structures by nonlinear finite element method. Every successive solution involves the previous one as an initial estimate in convergent domain. To find an initial estimate for the first solution a force density method is used. The proposed method is tested on a new large space umbrella reflector

    Stress-strain state simulation of large-sized cable-stayed shell structures

    Get PDF
    This paper studies the opportunities for applying framed cable-stayed shell structures to generate innovative structures in civil engineering. Numerical solution methods for stress-strain state problems of these kinds of geometrically nonlinear structures were developed. Developed methods efficiency is presented by a range of large-dimensional space antenna reflectors

    Modelling large-sized mesh reflector with extended aperture

    Get PDF
    Offset large-sized deployable mesh reflector with symmetric frontal and rear nets is described in the paper. This reflector involves extended aperture area and reduced framework elements by applying beam elements in the peripheral areas of reflecting surface. Strain-stress analysis is conducted to calculate reflecting surface shape of required accuracy

    Piezo-Optical Transducers in High Sensitive Strain Measurements

    Get PDF
    New piezo-optical sensors based on the piezo-optical effect for high sensitive mechanical stress measurements have been proposed and developed. The piezo-optical method provides the highest sensitivity to strains compared to sensors based on any other physical principles. Piezo-optical sensors use materials whose parameters practically not change under load or over time, therefore piezo-optical sensors are devoid of the disadvantages inherent in strain-resistive and piezoelectric sensors, such as hysteresis, parameters degradation with time, small dynamic range, low sensitivity to strains, and high sensitivity to overloads. Accurate numerical simulation and experimental investigations of the piezo-optical transducer output signal formation made it possible to optimize its design and show that the its gauge factor is two to three orders of magnitude higher than the gauge factors of sensors of other types. The cruciform shape of the transducer photoelastic element made it possible to significantly increase the stresses in its working area at a given external force. Combining compactness, reliability, resistance to overloads, linearity and high sensitivity, in terms of the all set of these parameters, piezo-optical sensors significantly surpass the currently widely used strain-resistive, piezoelectric and fiber-optic sensors and open up new, previously inaccessible, possibilities in the tasks of measuring power loads

    Assessment of fatigue damage to aircraft glass using digital holography methods

    Get PDF
    The purpose of this work is to test the digital holography method for determining the depth of fatigue surface defects of the "silver" type of aviation organic glass caused by cyclic mechanical overloads, as well as the impact of aggressive substances. To study the fatigue defects of aviation organic glass, a digital holographic camera was used, the configuration of which is an axial scheme for recording digital Gabor holograms. During the experiment, the possibility of using the digital holography method to determine the characteristic transverse dimensions of surface defects in aircraft glazing parts and longitudinal dimensions was shown. The work carried out and the created model of the digital holographic camera show the potential possibility of creating a method for checking with a given accuracy the elements of the aircraft glazing for the presence of surface damage and assessing their impact on flight safety

    Prevalence of Risk Factors of Thromboembolic Complications in Women after Major Joint Arthroplasty in the Republic of Sakha (Yakutia)

    Get PDF
    The aim of this study was to assess the risk factors for thromboembolic complications after total arthroplasty of large joints in women in Yakutia conditions to optimize the management tactics of this category of patients. The average age of women was 59.98±11.56 years in the age range from 50 to 70 years. In order to validate the study, women were divided into 2 groups. The main group consisted of 284 women undergoing total knee arthroplasty (Group 1). The comparison group included 147 women undergoing total hip arthoplasty (Group 2). The study demonstrated that hypertension was more common in patients of Group 1 than in patients of Group 2. However, the incidence of coronary heart disease and heart rhythm disorder was detected most frequently in patients with total hip arthroplasty. Obesity, thrombosis of the veins of the lower extremities, and liver disease were detected with almost the same frequency in women with total knee arthroplasty and those with total hip arthroplasty. The frequency of occurrence of complications depending on the risk factors for thromboembolic complications and the type of surgical treatment of the joint was equal in the two groups of studied patients

    Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation.

    Get PDF
    Protein aggregation and abnormal lipid homeostasis are both implicated in neurodegeneration through unknown mechanisms. Here we demonstrate that aggregate-membrane interaction is critical to induce a form of cell death called ferroptosis. Importantly, the aggregate-membrane interaction that drives ferroptosis depends both on the conformational structure of the aggregate, as well as the oxidation state of the lipid membrane. We generated human stem cell-derived models of synucleinopathy, characterized by the intracellular formation of α-synuclein aggregates that bind to membranes. In human iPSC-derived neurons with SNCA triplication, physiological concentrations of glutamate and dopamine induce abnormal calcium signaling owing to the incorporation of excess α-synuclein oligomers into membranes, leading to altered membrane conductance and abnormal calcium influx. α-synuclein oligomers further induce lipid peroxidation. Targeted inhibition of lipid peroxidation prevents the aggregate-membrane interaction, abolishes aberrant calcium fluxes, and restores physiological calcium signaling. Inhibition of lipid peroxidation, and reduction of iron-dependent accumulation of free radicals, further prevents oligomer-induced toxicity in human neurons. In summary, we report that peroxidation of polyunsaturated fatty acids underlies the incorporation of β-sheet-rich aggregates into the membranes, and that additionally induces neuronal death. This suggests a role for ferroptosis in Parkinson's disease, and highlights a new mechanism by which lipid peroxidation causes cell death

    Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at root s=7 and 8 TeV

    Get PDF
    Peer reviewe

    Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Get PDF
    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis
    corecore