57 research outputs found
Local and regional climatic constraints of shrub and tree growth near the treeline
Many treeline and shrublines are not responding to climate warming as fast as expected. This lack of responsiveness could be explained by other non-thermal, climate drivers operating at the cold edge of distribution of trees and shrubs. To determine which are the main climate drivers of tree and shrub radial growth near the treeline we measured ring width and related it to climate variables (temperature, precipitation, snow depth) and vegetation greenness (NDVI, Normalized Different Vegetation Index). We compared two dwarf shrub (Vaccinium uliginosum, Dryas octopetala) and three tree species (Larix sibirica, Picea obovata, Pinus uncinata) sampled in three treeline sites: Polar or Northern Urals, Southern Urals, and Spanish Pyrenees. Dwarf shrubs presented lower first-order autocorrelation (AR1) than trees, excepting in the N. Urals site. In this site, V. uliginosum showed a negative growth trend, whereas this tendency was observed in P. obovata and P. uncinata trees from the S. Urals and Pyrenees sites, respectively. Shrub and tree growth indices correlated with NDVI at different months. Trees showed stronger and positive growth responses to warmer summer conditions and also negative responses to precipitation in the N. and S. Urals. The growth of D. octopetala in the Pyrenees was enhanced by prior-winter and current-spring precipitation showing a strong correlation with May snow depth (r = 0.66, p = 0.0006, period 1998−2020). Dwarf shrubs and trees coexisting near the treeline differently responded to regional climate variability. Our findings indicate a strong dependence of shrubs and trees on local (e.g., snow depth) and regional (e.g., growing-season air temperature) climate conditions, respectively
Mathematical model of Scheduler with Semi-Markov input and bandwidth sharing discipline
In this paper, we consider single server queueing system with multiple semi-Markov inputs and buffers. Each request of the flows brings to the system some random amount of information. According to the bandwidth sharing discipline, each buffer has its own part of the throughput and the server transmits the information from buffers simultaneously. The aim of the current research is to derive the probability distribution of the amount of information in single buffer
Semi-Markov resource flow as a bit-level model of traffic
In this paper, we consider semi-Markov flow as a bit-level model of traffic. Each request of the flow brings some arbitrary distributed amount of information to the system. The current paper aims to investigate the amount of information received in semi-Markov flow during time unit. We use the asymptotic analysis method under the limit condition of growing time of observation to derive the limiting probability distribution of the amount of information received in the flow and build the approximation of its prelimit distribution function
Real waiting time in single-server resource queue with Markovian arrival process
We consider single-server queue, which models a telecommunication node. Packets arrive in the system according to the Markovian arrival process (MAP). The packets bring some amount of information, which is stored in a continuous-type unlimited buffer before it will be transmitted out of the system. We consider the system with fluid manner of service, which means that the server takes the information from the buffer with constant speed. Our aim is to derive the probability distribution of the real waiting time in the syste
Measurement of (anti)deuteron and (anti)proton production in DIS at HERA
The first observation of (anti)deuterons in deep inelastic scattering at HERA
has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV
using an integrated luminosity of 120 pb-1. The measurement was performed in
the central rapidity region for transverse momentum per unit of mass in the
range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in
terms of the coalescence model. The (anti)deuteron production yield is smaller
than the (anti)proton yield by approximately three orders of magnitude,
consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
ReSurveyEurope : A database of resurveyed vegetation plots in Europe
Aims: We introduce ReSurveyEurope — a new data source of resurveyed vegetation
plots in Europe, compiled by a collaborative network of vegetation scientists. We de-
scribe the scope of this initiative, provide an overview of currently available data,
governance, data contribution rules, and accessibility. In addition, we outline further
steps, including potential research questions.
Results: ReSurveyEurope includes resurveyed vegetation plots from all habitats.
Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual sur-
veys of each plot) from 79,190 plots sampled in 449 independent resurvey projects.
Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with
GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%)
plots are from studies in which plots from the initial survey could not be exactly
relocated. Four data sets, which together account for 28,470 (36%) plots, provide
only presence/absence information on plant species, while the remaining 50,720
(64%) plots contain abundance information (e.g., percentage cover or cover–abun-
dance classes such as variants of the Braun- Blanquet scale). The oldest plots were
sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950
and 2020.
Conclusions: ReSurveyEurope is a new resource to address a wide range of re-
search questions on fine-scale changes in European vegetation. The initiative is de-
voted to an inclusive and transparent governance and data usage approach, based
on slightly adapted rules of the well-established European Vegetation Archive (EVA).
ReSurveyEurope data are ready for use, and proposals for analyses of the data set
can be submitted at any time to the coordinators. Still, further data contributions are
highly welcom
ReSurveyEurope: A database of resurveyed vegetation plots in Europe
Abstract Aims We introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions. Results ReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020. Conclusions ReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Racial differences in systemic sclerosis disease presentation: a European Scleroderma Trials and Research group study
Objectives. Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations.Methods. SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses.Results. The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P < 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P < 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P < 0.001) diffuse skin involvement than had WP.AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P < 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P < 0.001; OR(BP) = 2.4, P < 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P < 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P < 0.001].Conclusion. Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality
- …