140 research outputs found

    Drug-Phospholipid Complex-loaded Matrix Film Formulation for the Enhanced Transdermal Delivery of Quercetin

    Get PDF
    A novel quercetin-phospholipid-complex(QPLC)-loaded matrix film for improved transdermal delivery of quercetin was developed. The QPLC formulation, prepared using a solvent-evaporation method, was optimized using a central-composite design. The optimized QPLC formulation was characterized by particle size and zeta potential analysis, thermal analysis, Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). QPLC formulation was functionally evaluated for solubility and in vitro dissolution of quercetin. Matrix films of pure quercetin (Q-MF)or QPLC QPLC-MF) were prepared using a solvent casting method. The prepared Q-MF and QPLC-MF were characterized for weight uniformity, folding endurance, moisture content, and moisture uptake. The films were also functionally characterized for in vitro diffusion of quercetin through a dialysis membrane and ex vivo permeability of quercetin across rat skin. Finally, the anti-inflammatory activity of the films was evaluated on carrageenan-induced paw edema in Wistar albino rats. The experimental design identified the optimal formulation and process variables for the preparation of QPLC. The validation of the obtained model using these values confirmed the suitability and robustness of the model. The physical-chemical characterization of the prepared QPLC supported the formation of a stable complex. The solubility analysis of QPLC showed a 22-fold increase in quercetin aqueous solubility, compared to pure quercetin. The dissolution results exhibited a significantly higher rate and extent of quercetin dissolution from QPLC compared to that of pure quercetin. The permeability of quercetin from Q-MF and QPLC-MF across rat skin mirrored those obtained from the dissolution studies. Topical application of QPLC-MF exhibited a significant (p\u3c0.05) inhibition of carrageenan-induced paw edema in rats compared to that of Q-MF. This study provides a promising combination approach, i.e., phospholipid-based complexation and transdermal film formulation for improved transdermal delivery of quercetin and similar pharmacologically active phytoconstituents

    INVESTIGATION OF EFFECT OF PHOSPHOLIPIDS ON PHYSICAL AND FUNCTIONAL CHARACTERIZATION OF PACLITAXEL LIPOSOMES

    Get PDF
    Objective: Aim of the present investigation was to determine the effect of various synthetic grades of phospholipids on paclitaxel liposomes (PTL).Methods: The PTL formulations using various grades of phospholipids were prepared by film hydration method. The prepared PTL formulations were physicochemically characterized by entrapment efficiency (EE, %w/w), vesicular size and particle size distribution. These formulations were also characterized for function parameters such as in vitro release and hemolytic toxicity assay.Results: The synthetic grades of phospholipids significantly influenced PTL formulations. The stoichiometric ratio (1:1) between CH and various synthetic phospholipids was found to be optimized one, from rest of the ratios. The characterization confirmed the formation of PTL. The EE was observed to be high (86.67%) as increasing the ratios between CH and phospholipids but then declined suddenly as further increasing the ratio. The best liposomal formulations showed that the spherical shape was found to be within size ranging from<10 µm, with a higher rate and extent of the release, ~86.22% of paclitaxel from PTL formulation. The results of the hemolytic toxicity study demonstrated that PTL formulations with a ratio (1:1) exhibited a significantly lower hemolytic toxicity (2.70%), compared to all formulations.Conclusion: The result revealed the excellent effect of phospholipids on paclitaxel liposomes. The paclitaxel liposomes prepared with CH: PL90G ratio (1:1) was found to be optimized one. The entrapment efficiency, particle size distribution, in vitro release and hemolytic activity with this ratio shown to be excellent as compared to other ratios

    Rural Indian tribal communities: an emerging high-risk group for HIV/AIDS

    Get PDF
    BACKGROUND: Rural Indian tribes are anthropologically distinct with unique cultures, traditions and practices. Over the years, displacement and rapid acculturation of this population has led to dramatic changes in their socio-cultural and value systems. Due to a poor health infrastructure, high levels of poverty and ignorance, these communities are highly vulnerable to various health problems, especially, communicable diseases including HIV/AIDS. Our study sought to assess knowledge, attitudes and practices regarding sexuality, and the risk factors associated with the spread of HIV/AIDS and STDs among these communities. METHODS: A nested cross sectional study was undertaken as part of the on going Reproductive and Child Health Survey. A total of 5,690 participants age 18–44 were recruited for this study. Data were obtained through home interviews, and focused on socio-demographics, knowledge, attitudes and behaviors regarding sexuality, HIV/AIDS and other STDs. RESULTS: The study revealed that only 22% of adults had even heard of AIDS, and 18 % knew how it is transmitted. In addition, only 5% knew that STDs and AIDS were related to each other. AIDS awareness among women was lower compared to men (14% vs.30 %). Regarding sexual practices, 35% of the respondents reported having had extramarital sexual encounters, with more males than females reporting extramarital affairs. CONCLUSION: Lack of awareness, permissiveness of tribal societies for premarital or extra-marital sexual relationships, and sexual mixing patterns predispose these communities to HIV/AIDS and STD infections. There is a dire need for targeted interventions in order to curtail the increasing threat of HIV and other STDs among these vulnerable populations

    Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation.

    Get PDF
    Cancer-associated mutations in the spliceosome gene SF3B1 create a neomorphic protein that produces aberrant mRNA splicing in hundreds of genes, but the ensuing biologic and therapeutic consequences of this missplicing are not well understood. Here we have provided evidence that aberrant splicing by mutant SF3B1 altered the transcriptome, proteome, and metabolome of human cells, leading to missplicing-associated downregulation of metabolic genes, decreased mitochondrial respiration, and suppression of the serine synthesis pathway. We also found that mutant SF3B1 induces vulnerability to deprivation of the nonessential amino acid serine, which was mediated by missplicing-associated downregulation of the serine synthesis pathway enzyme PHGDH. This vulnerability was manifest both in vitro and in vivo, as dietary restriction of serine and glycine in mice was able to inhibit the growth of SF3B1MUT xenografts. These findings describe a role for SF3B1 mutations in altered energy metabolism, and they offer a new therapeutic strategy against SF3B1MUT cancers

    Tolerability of breast ductal lavage in women from families at high genetic risk of breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ductal lavage (DL) has been proposed as a minimally-invasive, well-tolerated tool for obtaining breast epithelial cells for cytological evaluation of breast cancer risk. We report DL tolerability in <it>BRCA1/2 </it>mutation-positive and -negative women from an IRB-approved research study.</p> <p>Methods</p> <p>165 <it>BRCA1/2 </it>mutation-positive, 26 mutation-negative and 3 mutation unknown women underwent mammography, breast MRI and DL. Psychological well-being and perceptions of pain were obtained before and after DL, and compared with pain experienced during other screening procedures.</p> <p>Results</p> <p>The average <b><it>anticipated </it></b>and <b><it>experienced </it></b>discomfort rating for DL, 47 and 48 (0–100), were significantly higher (<it>p </it>< 0.01) than the <b><it>anticipated </it></b>and <b><it>experienced </it></b>discomfort of mammogram (38 and 34), MRI (36 and 25) or nipple aspiration (42 and 27). Women with greater pre-existing emotional distress experienced more DL-related discomfort than they anticipated. Women reporting DL-related pain as worse than expected were nearly three times more likely to refuse subsequent DL than those reporting it as the same or better than expected. Twenty-five percent of participants refused repeat DL at first annual follow-up.</p> <p>Conclusion</p> <p>DL was anticipated to be and experienced as <b>more </b>uncomfortable than other procedures used in breast cancer screening. Higher underlying psychological distress was associated with decreased DL tolerability.</p

    Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes

    Get PDF
    © 2017 Wong et al.; Published by Cold Spring Harbor Laboratory Press. Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted noncoding RNAs to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes

    GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

    Get PDF
    We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1  M⊙ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6−0.7+3.2  M⊙ and 84.4−11.1+15.8  M⊙ and range in distance between 320−110+120 and 2840−1360+1400  Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110−3840  Gpc−3 y−1 for binary neutron stars and 9.7−101  Gpc−3 y−1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610  Gpc−3 y−1

    GW190425 : observation of a compact binary coalescence with total mass ~ 3.4 M o

    Get PDF
    On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810

    Search for eccentric binary black hole mergers with Advanced LIGO and Advanced Virgo during their first and second observing runs

    Get PDF
    When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates greater than about 100 Gpc−3 yr−1 for e > 0.1, assuming a black hole mass spectrum with a power-law index less than about 2
    corecore