47 research outputs found

    Quantum molecular dynamics simulations of conjugated polymers

    Get PDF
    The softness of conjugated polymers leads to strong coupling between polymer's electrons and lattice vibrations. Therefore, it is necessary to perform quantum molecular dynamics computer simulations in order to study their electronic and optical properties at molecular level. We have used self-consistent molecular dynamics calculations with interatomic forces evaluated from quantum mechanical calculations at the complete neglect of differential overlap level to discuss some of the issues relating to the electronic processes involved in polydiacetylene and poly(p-phenylene vinylene). Specifically addressed are the charge induced structural changes of the polymer chains and the intra-molecular charge mobility. The change in the chemical potential of individual polymer strands at zero temperature is also discussed. Our results suggest a geometrical distortion in the bond length distribution relative to the uncharged chains which is accompanied by changes in atomic charges at the distortion site. The charge carrier mobility is predicted to depend on the strength of the electric field, in accordance with experiments

    Thermal Density Functional Theory in Context

    Full text link
    This chapter introduces thermal density functional theory, starting from the ground-state theory and assuming a background in quantum mechanics and statistical mechanics. We review the foundations of density functional theory (DFT) by illustrating some of its key reformulations. The basics of DFT for thermal ensembles are explained in this context, as are tools useful for analysis and development of approximations. We close by discussing some key ideas relating thermal DFT and the ground state. This review emphasizes thermal DFT's strengths as a consistent and general framework.Comment: Submitted to Spring Verlag as chapter in "Computational Challenges in Warm Dense Matter", F. Graziani et al. ed

    Competition can lead to unexpected patterns in tropical ant communities

    Get PDF
    Ecological communities are structured by competitive, predatory, mutualistic and parasitic interactions combined with chance events. Separating deterministic from stochastic processes is possible, but finding statistical evidence for specific biological interactions is challenging. We attempt to solve this problem for ant communities nesting in epiphytic bird's nest ferns (Asplenium nidus) in Borneo's lowland rainforest. By recording the frequencies with which each and every single ant species occurred together, we were able to test statistically for patterns associated with interspecific competition. We found evidence for competition, but the resulting co-occurrence pattern was the opposite of what we expected. Rather than detecting species segregation—the classical hallmark of competition—we found species aggregation. Moreover, our approach of testing individual pairwise interactions mostly revealed spatially positive rather than negative associations. Significant negative interactions were only detected among large ants, and among species of the subfamily Ponerinae. Remarkably, the results from this study, and from a corroborating analysis of ant communities known to be structured by competition, suggest that competition within the ants leads to species aggregation rather than segregation. We believe this unexpected result is linked with the displacement of species following asymmetric competition. We conclude that analysing co-occurrence frequencies across complete species assemblages, separately for each species, and for each unique pairwise combination of species, represents a subtle yet powerful way of detecting structure and compartmentalisation in ecological communities

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Hepatocyte growth factor/scatter factor and prostate cancer: a review

    No full text
    Men who die from prostate cancer do so from uncontrolled metastatic disease. A better understanding of the mechanisms involved in the progression and metastasis of prostate cancer may lead to novel therapeutic approaches to prevent its natural progression. Hepatocyte Growth Factor / Scatter factor (HGF/SF) has been demonstrated to elicit a number of key functions in numerous tissues that are important in the progression, invasion and metastasis of cancer. Studies have demonstrated that the activity of HGF/SF and its receptor c-Met are linked to disease progression in numerous cancers. However, research into these functions, which include activities as a mitogen, a motogen and an anti-apoptotic and angiogenic factor in prostate cancer are limited. This article reviews the published evidence of the roles HGF/SF plays in prostate cancer progression and highlights the clinical and therapeutic potential of research into this pleiomorphic cytokine
    corecore