9 research outputs found

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams. </p

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams

    Impact of Fluorescent Lighting on Oxidation of Model Wine Solutions Containing Organic Acids and Iron

    No full text
    Previous studies have provided evidence that light exposure can increase oxygen consumption in wine and that the photodegradation of iron­(III) tartrate could contribute to this process. In the present study, model wine solutions containing iron­(III) and various organic acids, either alone or combined, were stored in sealed clear glass wine bottles and exposed to light from fluorescent lamps. Dissolved oxygen was monitored, and afterward the organic acid degradation products were determined and the capacity of the solutions to bind sulfur dioxide, the main wine preservative, was assessed. In the dark controls, little or no dissolved oxygen was consumed and the organic acids were stable. In the irradiated solutions, dissolved oxygen was consumed at a rate that was dependent on the specific organic acid present, and the latter were oxidized to various carbonyl compounds. For the solutions containing tartaric acid, malic acid, and/or citric acid, irradiation increased their sulfur dioxide-binding capacity

    Wine Metabolomics: Objective Measures of Sensory Properties of Semillon from GC-MS Profiles

    No full text
    The contribution of volatile aroma compounds to the overall composition and sensory perception of wine is well recognized. The classical targeted measurement of volatile compounds in wine using GC-MS is laborious and only a limited number of compounds can be quantified at any time. Application of an automated multivariate curve resolution technique to nontargeted GC-MS analysis of wine makes it possible to detect several hundred compounds within a single analytical run. Hunter Valley Semillon (HVS) is recognized as a world class wine with a range of styles. Subtle characters reliant upon the development of bottle maturation characteristics are a feature of highly esteemed HVS. In this investigation a metabolomic approach to wine analysis, using multivariate curve resolution techniques applied to GC-MS profiles coupled with full descriptive sensory analysis, was used to determine the objective composition of various styles of HVS. Over 250 GC-MS peaks were extracted from the wine profiles. Sensory scores were analyzed using PARAFAC prior to development of predictive models of sensory features from the extracted GC-MS peak table using PLS regression. Good predictive models of the sensorial attributes honey, toast, orange marmalade, and sweetness, the defining traits for HVS, could be determined from the extracted peak tables. Compound identification for these rated attributes indicated the importance of a range of ethyl esters, aliphatic alcohols and acids, ketones, aldehydes, furanic derivatives, and norisoprenoids in the development of HVS and styles. The development of automated metabolomic data analysis of GC-MS profiles of wines will assist in the development of wine styles for specific consumer segments and enhance understanding of production processes on the ultimate sensory profiles of the product

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    No full text
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Supplement: Localization and broadband follow-up of the gravitational-wave transient GW150914

    No full text
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
    corecore