20 research outputs found

    Stream diatom biodiversity in islands and continents—A global perspective on effects of area, isolation and environment

    Get PDF
    Aim The species-area relationship (SAR) is one of the most distinctive biogeographic patterns, but global comparisons of the SARs between island and mainland are lacking for microbial taxa. Here, we explore whether the form of the SAR and the drivers of species richness, including area, environmental heterogeneity, climate and physico-chemistry, differ between islands and similarly sized areas on mainland, referred to as continental area equivalents (CAEs). Location Global. Taxon Stream benthic diatoms. Methods We generated CAEs on six continental datasets and examined the SARs of CAEs and islands (ISAR). Then, we compared CAEs and islands in terms of total richness and richness of different ecological guilds. We tested the factors contributing to richness in islands and CAEs with regressions. We used structural equation models to determine the effects of area versus environmental heterogeneity, climate and local conditions on species richness. Results We found a non-significant ISAR, but a significant positive SAR in CAEs. Richness in islands was related to productivity. Richness in CAEs was mainly dependent on area and climate, but not directly on environmental heterogeneity. Species richness within guilds exhibited inconsistent relationships with island isolation and area. Main conclusions Ecological and evolutionary processes shaping diatom island biogeography do not depend on area at the worldwide scale probably due to the presence of distinct species pool across islands. Conversely, area was an important driver of diatom richness in continents, and this effect could be attributed to dispersal. Continents had greater richness than islands, but this was a consequence of differences in environmental conditions such as specific island climatic conditions. We stress the need for more island data on benthic diatoms, particularly from archipelagos, to better understand the biogeography of this most speciose group of algae

    The Mediterranean Island Wetlands (MedIsWet) inventory: strengths and shortfalls of the currently available floristic data

    Get PDF
    MedIsWet (Conservation of the island wetlands of the Mediterranean Basin) is a MAVA funded project which aims at investigating all seasonal or permanent island wetlands both natural and artificial, with a minimum extent of 0.1 hectares. More than 16,000 wetlands from almost all the Mediterranean, including islands from France, Italy, Malta, Croatia, Cyprus, Tunisia, Turkey, Greece and Spain were mapped. Over 2,500 of them were inventoried in the field and more than 500 scientific contributions catalogued. In total, more than 35,000 plant occurrences were uploaded, in a standardised and comparable way, on the national open-source web portals. These can be related to the recorded threats, uses and other spatially retrievable information. Here, we show strengths and shortfalls of the already available information about the floristic records. Although further improvements are needed, we discuss how these data can be used for research and policy actions and to develop conservation projects

    New molecular methods to assess biodiversity. Potentials and pitfalls of DNA metabarcoding: a workshop report

    Get PDF
    This report presents the outcome of the joint work of PhD students and senior researchers working with DNA-based biodiversity assessment approaches with the goal to facilitate others the access to definitions and explanations about novel DNA-based methods. The work was performed during a PhD course (SLU PNS0169) at the Swedish University of Agricultural Sciences (SLU) in Uppsala, Sweden. The course was co-organized by the EU COST research network DNAqua-Net and the SLU Research Schools Focus on Soils and Water (FoSW) and Ecology - basics and applications. DNAqua-Net (COST Action CA15219, 2016-2020) is a network connecting researchers, water managers, politicians and other stakeholders with the aim to develop new genetic tools for bioassessment of aquatic ecosystems in Europe and beyond. The PhD course offered a comprehensive overview of the paradigm shift from traditional morphology-based species identification to novel identification approaches based on molecular markers. We covered the use of molecular tools in both basic research and applied use with a focus on aquatic ecosystem assessment, from species collection to the use of diversity in environmental legislation. The focus of the course was on DNA (meta)barcoding and aquatic organisms. The knowledge gained was shared with the general public by creating Wikipedia pages and through this collaborative Open Access publication, co-authored by all course participants

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia)

    Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and the ex‐ tent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (precon‐ ditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experi‐ mentally simulated, under standard laboratory conditions, rewetting of leaves, river‐ bed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative character‐ istics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dis‐ solved substances during rewetting events (56%–98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contrib‐ uted most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental vari‐ ables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached sub‐ stances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying event

    Simulating rewetting events in intermittent rivers and ephemeral streams: a global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56‐98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached organic matter. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events

    Horizon Scanning to Predict and Prioritize Invasive Alien Species With the Potential to Threaten Human Health and Economies on Cyprus

    Get PDF
    Invasive alien species (IAS) are known to be a major threat to biodiversity and ecosystem function and there is increasing evidence of their impacts on human health and economies globally. We undertook horizon scanning using expert-elicitation to predict arrivals of IAS that could have adverse human health or economic impacts on the island of Cyprus. Three hundred and twenty five IAS comprising 89 plants, 37 freshwater animals, 61 terrestrial invertebrates, 93 terrestrial vertebrates, and 45 marine species, were assessed during a two-day workshop involving 39 participants to derive two ranked lists: (1) IAS with potential human health impacts (20 species ranked within two bands: 1–10 species or 11–20 species); and, (2) IAS with potential economic impacts (50 species ranked in three bands of 1–10, 11–20, and 21–50). Five species of mosquitoes (Aedes aegypti, Aedes albopictus, Aedes flavopictus, Aedes japonicus, and Culex quinquefasciatus) were considered a potential threat to both human health and economies. It was evident that the IAS identified through this process could potentially arrive through many pathways (25 and 23 pathways were noted for the top 20 IAS on the human health and economic impact lists respectively). The Convention on Biological Diversity Level II (subcategory) pathways Contaminant on plants, pet/aquarium/terrarium species (including live food for such species), hitchhikers in or on aeroplanes, hitchhikers in or on ship/boats, and vehicles were the main pathways that arose across both lists. We discuss the potential of horizon scanning lists to inform biosecurity policies and communication around IAS, highlighting the importance of increasing understanding amongst all stakeholders, including the public, to reduce the risks associated with predicted IAS arrivals

    Horizon scanning for invasive alien species with the potential to threaten biodiversity and human health on a Mediterranean island

    Get PDF
    © 2019, The Author(s). Invasive alien species (IAS) are one of the major drivers of change that can negatively affect biodiversity, ecosystem functions and services and human health; islands are particularly vulnerable to biological invasions. Horizon scanning can lead to prioritisation of IAS to inform decision-making and action; its scale and scope can vary depending on the need. We focussed on IAS likely to arrive, establish and affect biodiversity and human health on the Mediterranean island of Cyprus. The scope of the horizon scanning was the entire island of Cyprus. We used a two-step consensus-building process in which experts reviewed and scored lists of alien species on their likelihood of arrival, establishment and potential to affect biodiversity, ecosystems and/or human health in the next 10 years. We reviewed 225 alien species, considered to be currently absent on Cyprus, across taxa and environments. We agreed upon 100 species that constituted very high, high or medium biodiversity risk, often arriving through multiple pathways of introduction. The remaining 125 species were ranked as low risk. The potential impacts on human health were documented for all 225 species; 82 species were considered to have a potentially negative impact on human health ranging from nuisance to disease transmission. The scope of the horizon scanning was the entire island of Cyprus, but the thematic groups also considered the relevance of the top 100 species to the Sovereign Base Areas of Cyprus, given their differing governance. This horizon scan provides the first systematic exercise to identify invasive alien species of potential concern to biodiversity and ecosystems but also human health within the Mediterranean region. The process and outcomes should provide other islands in the region and beyond with baseline data to improve IAS prioritisation and management

    Sediment respiration pulses in intermittent rivers and ephemeral streams

    Get PDF
    Intermittent rivers and ephemeral streams (IRES) may represent over half the global stream network, but their contribution to respiration and carbon dioxide (CO2) emissions is largely undetermined. In particular, little is known about the variability and drivers of respiration in IRES sediments upon rewetting, which could result in large pulses of CO2. We present a global study examining sediments from 200 dry IRES reaches spanning multiple biomes. Results from standardized assays show that mean respiration increased 32–66‐fold upon sediment rewetting. Structural equation modelling indicates that this response was driven by sediment texture and organic matter quantity and quality, which, in turn, were influenced by climate, land use and riparian plant cover. Our estimates suggest that respiration pulses resulting from rewetting of IRES sediments could contribute significantly to annual CO2 emissions from the global stream network, with a single respiration pulse potentially increasing emission by 0.2–0.7%. As the spatial and temporal extent of IRES increases globally, our results highlight the importance of recognizing the influence of wetting‐drying cycles on respiration and CO2 emissions in stream networks

    A global analysis of terrestrial plant litter dynamics in non-perennial waterways

    Get PDF
    Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O2) consumption in standardized assays and estimated the potential short-term CO2 emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO2 emission upon litter rewetting contributes up to 10% of the daily CO2 emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments
    corecore