344 research outputs found

    Utilization of an Electrochemiluminescence Sensor for Atropine Determination in Complex Matrices

    Get PDF
    A major challenge within forensic science is the development of accurate and robust methodologies that can be utilized on-site for detection at crime scenes and can be used for analyzing multiple sample types. The recent expansion of electrochemical sensors to tackle this hurdle requires sensors that can undergo analysis without any pretreatment. Given the vast array of samples that are submitted for forensic analysis, this can pose a major challenge for all electrochemical sensors, including electrochemiluminescent (ECL)-based sensors. Within this contribution, we demonstrate the capacity for an ECL-based sensor to address this challenge and it is potential to detect and quantify atropine from a wide range of samples directly from herbal material to spiked solutions. This portable platform demonstrates satisfactory analytical parameters with linearity across a concentration range of 0.75 to 100 μM, reproducibility of 3.0%, repeatability of 9.2%, and a detection limit of ∼0.75 μM. The sensor displays good selectivity toward alkaloid species and, in particular, the hallucinogenic tropane alkaloid functionality within complex matrices. This portable sensor provides rapid detection alongside low cost and operational simplicity, thus, providing a basis for the exploitation of ECL-based sensors within the forensic arena

    Sun, Moon, Stars, Rain, Vol. 7 No. 11

    Get PDF
    Official publication of the Sigma Tau Delta English Honor Society, Alpha Zet Chapter, Stephen F. Austin State University. Published one a year in the Fall Semester, in cooperation with the English Department of Stephen F. Austin State University.https://scholarworks.sfasu.edu/smsr/1000/thumbnail.jp

    Sun, Moon, Stars, Rain, Vol. 7 No. 11

    Get PDF
    Official publication of the Sigma Tau Delta English Honor Society, Alpha Zet Chapter, Stephen F. Austin State University. Published one a year in the Fall Semester, in cooperation with the English Department of Stephen F. Austin State University

    Research design considerations for clinical studies of abuse-deterrent opioid analgesics: IMMPACT recommendations

    Get PDF
    Opioids are essential to the management of pain in many patients, but they also are associated with potential risks for abuse, overdose, and diversion. A number of efforts have been devoted to the development of abuse-deterrent formulations of opioids to reduce these risks. This article summarizes a consensus meeting that was organized to propose recommendations for the types of clinical studies that can be used to assess the abuse deterrence of different opioid formulations. Due to the many types of individuals who may be exposed to opioids, an opioid formulation will need to be studied in several populations using various study designs in order to determine its abuse-deterrent capabilities. It is recommended that the research conducted to evaluate abuse deterrence should include studies assessing: (1) abuse liability; (2) the likelihood that opioid abusers will find methods to circumvent the deterrent properties of the formulation; (3) measures of misuse and abuse in randomized clinical trials involving pain patients with both low risk and high risk of abuse; and (4) post-marketing epidemiological studies

    Rare coding variants in ten genes confer substantial risk for schizophrenia

    Get PDF
    Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, PPeer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore