674 research outputs found
Order induced by dipolar interactions in a geometrically frustrated antiferromagnet
We study the classical Heisenberg model for spins on a pyrochlore lattice
interacting via long range dipole-dipole forces and nearest neighbor exchange.
Antiferromagnetic exchange alone is known not to induce ordering in this
system. We analyze low temperature order resulting from the combined
interactions, both by using a mean-field approach and by examining the energy
cost of fluctuations about an ordered state. We discuss behavior as a function
of the ratio of the dipolar and exchange interaction strengths and find two
types of ordered phase. We relate our results to the recent experimental work
and reproduce and extend the theoretical calculations on the pyrochlore
compound, GdTiO, by Raju \textit{et al.}, Phys. Rev. B {\bf 59},
14489 (1999).Comment: 5 pages, 5 figures, AMSLaTe
Classical heisenberg antiferromagnet away from the pyrochlore lattice limit: entropic versus energetic selection
The stability of the disordered ground state of the classical Heisenberg
pyrochlore antiferromagnet is studied within extensive Monte Carlo simulations
by introducing an additional exchange interaction that interpolates
between the pyrochlore lattice () and the face-centered cubic lattice
(). It is found that for as low as , the system is
long range ordered : the disordered ground state of the pyrochlore
antiferromagnet is unstable when introducing very small deviations from the
pure limit. Furthermore, it is found that the selected phase is a
collinear state energetically greater than the incommensurate phase suggested
by a mean field analysis. To our knowledge this is the first example where
entropic selection prevails over the energetic one.Comment: 5 (two-column revtex4) pages, 1 table, 7 ps/eps figures. Submitted to
Phys. Rev.
Ultra-high resolution X-ray structure of orthorhombic bovine pancreatic Ribonuclease A at 100K
The crystal structure of orthorhombic Bovine Pancreatic Ribonuclease A has been determined to 0.85 Å resolution using low temperature, 100 K, synchrotron X-ray data collected at 16000 keV (λ = 0.77 Å). This is the first ultra-high-resolution structure of a native form of Ribonuclease A to be reported. Refinement carried out with anisotropic displacement parameters, stereochemical restraints, inclusion of H atoms in calculated positions, five SO2−4 moieties, eleven ethanol molecules and 293 water molecules, converged with final R values of R1(Free) = 0.129 (4279 reflections) and R1 = 0.112 (85,346 reflections). The refined structure was deposited in the Protein Data Bank as structure 7p4r. Conserved waters, using four high resolution structures, have been investigated. Cluster analysis identified clusters of water molecules that are associated with the active site of Bovine Ribonuclease A. Particular attention has been paid to making detailed comparisons between the present structure and other high quality Bovine Pancreatic Ribonuclease A X-ray crystal structures with special reference to the deposited classic monoclinic structure 3RN3 Howlin et al. (Acta Crystallogr A 45:851–861, 1989). Detailed studies of various aspects of hydrogen bonding and conformation have been carried out with particular reference to active site residues Lys-1, Lys-7, Gln-11, His-12, Lys-41, Asn-44, Thr-45, Lys-66, His-119 and Ser-123. For the two histidine residues in the active site the initial electron density map gives a clear confirmation that the position of His-12 is very similar in the orthorhombic structure to that in 3RN3. In 3RN3 His-119 exhibited poor electron density which was modelled and refined as two distinct sites, A (65%) and B (35%) but with respect to His-119 in the present ultra-high resolution orthorhombic structure there is clear electron density which was modelled and refined as a single conformation distinct from either conformation A or B in 3RN3. Other points of interest include Serine-32 which is disordered at the end of the sidechain in the present orthorhombic form but has been modelled as a single form in 3RN3. Lysine-66: there is density indicating a possible conformation for this residue. However, the density is relatively weak, and the conformation is unclear. Three types of amino acid representation in the ultra-high resolution electron density are examined: (i) sharp with very clearly resolved features, for example Lys-37; (ii) well resolved but clearly divided into two conformations which are well behaved in the refinement, both having high quality geometry, for example Tyr-76; (iii) poor density and difficult or impossible to model, an example is Lys-31 for which density is missing except for Cβ. The side chains of Gln-11, His-12, Lys-41, Thr-45 and His-119 are generally recognised as being closely involved in the enzyme activity. It has also been suggested that Lys-7, Asp-44, Lys-66, Phe-120, Asp-121 and Ser-123 may also have possible roles in this mechanism. A molecular dynamics study on both structures has investigated the conformations of His-119 which was modelled as two conformations in 3RN3 but is observed to have a single clearly defined conformation in the present orthorhombic structure. MD has also been used to investigate Lys-31, Lys-41 and Ser32. The form of the Ribonuclease A enzyme used in both the present study and in 3RN3 (Howlin et al. in Acta Crystallogr A 45:851–861, 1989) includes a sulphate anion which occupies approximately the same location as the PO2−4 phosphate group in protein nucleotide complexes (Borkakoti et al. in J Mol Biol 169:743–755, 1983). The present structure contains 5 SO2−4 groups SO41151–SO41155 two of which, SO41152 and SO41153 are disordered, SO41152 being in the active site, and 11 EtOH molecules, EOH A 201–EOH A 211 all of which have good geometry. H atoms were built into the EtOH molecules geometrically. Illustrations of these features in the present structure are included here. The sulphates are presumably present in the material purchased for use in the present study. 293 water molecules are included in the present structure compared to 134 in 3RN3 (Howlin et al. in Acta Crystallogr A 45:851–861, 1989)
Susceptibility and dilution effects of the kagome bi-layer geometrically frustrated network. A Ga-NMR study of SrCr_(9p)Ga_(12-9p)O_(19)
We present an extensive gallium NMR study of the geometrically frustrated
kagome bi-layer compound SrCr_(9p)Ga_(12-9p)O_(19) (Cr^3+, S=3/2) over a broad
Cr-concentration range (.72<p<.95). This allows us to probe locally the kagome
bi-layer susceptibility and separate the intrinsic properties due to the
geometric frustration from those related to the site dilution. Our major
findings are: 1) The intrinsic kagome bi-layer susceptibility exhibits a
maximum in temperature at 40-50 K and is robust to a dilution as high as ~20%.
The maximum reveals the development of short range antiferromagnetic
correlations; 2) At low-T, a highly dynamical state induces a strong wipe-out
of the NMR intensity, regardless of dilution; 3) The low-T upturn observed in
the macroscopic susceptibility is associated to paramagnetic defects which stem
from the dilution of the kagome bi-layer. The low-T analysis of the NMR
lineshape suggests that the defect can be associated with a staggered
spin-response to the vacancies on the kagome bi-layer. This, altogether with
the maximum in the kagome bi-layer susceptibility, is very similar to what is
observed in most low-dimensional antiferromagnetic correlated systems; 4) The
spin glass-like freezing observed at T_g=2-4 K is not driven by the
dilution-induced defects.Comment: 19 pages, 19 figures, revised version resubmitted to PRB Minor
modifications: Fig.11 and discussion in Sec.V on the NMR shif
Search for CP violation in D0 and D+ decays
A high statistics sample of photoproduced charm particles from the FOCUS
(E831) experiment at Fermilab has been used to search for CP violation in the
Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We
have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/-
0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) =
+0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second
error is systematic. These asymmetries are consistent with zero with smaller
errors than previous measurements.Comment: 12 pages, 4 figure
Propagation phase-contrast micro-computed tomography allows laboratory-based three-dimensional imaging of articular cartilage down to the cellular level
High-resolution non-invasive three-dimensional (3D) imaging of chondrocytes in articular cartilage remains elusive. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) permits imaging cells within articular cartilage
Quantum magnetism in two dimensions: From semi-classical N\'eel order to magnetic disorder
This is a review of ground-state features of the s=1/2 Heisenberg
antiferromagnet on two-dimensional lattices. A central issue is the interplay
of lattice topology (e.g. coordination number, non-equivalent nearest-neighbor
bonds, geometric frustration) and quantum fluctuations and their impact on
possible long-range order. This article presents a unified summary of all 11
two-dimensional uniform Archimedean lattices which include e.g. the square,
triangular and kagome lattice. We find that the ground state of the spin-1/2
Heisenberg antiferromagnet is likely to be semi-classically ordered in most
cases. However, the interplay of geometric frustration and quantum fluctuations
gives rise to a quantum paramagnetic ground state without semi-classical
long-range order on two lattices which are precisely those among the 11 uniform
Archimedean lattices with a highly degenerate ground state in the classical
limit. The first one is the famous kagome lattice where many low-lying singlet
excitations are known to arise in the spin gap. The second lattice is called
star lattice and has a clear gap to all excitations.
Modification of certain bonds leads to quantum phase transitions which are
also discussed briefly. Furthermore, we discuss the magnetization process of
the Heisenberg antiferromagnet on the 11 Archimedean lattices, focusing on
anomalies like plateaus and a magnetization jump just below the saturation
field. As an illustration we discuss the two-dimensional Shastry-Sutherland
model which is used to describe SrCu2(BO3)2.Comment: This is now the complete 72-page preprint version of the 2004 review
article. This version corrects two further typographic errors (three total
with respect to the published version), see page 2 for detail
Wiggle-match radiocarbon dating of the Taupo eruption
The Taupo eruption deposit is an isochronous marker bed that spans much of New Zealand’s North Island and pre-dates human arrival. Holdaway et al. (2018, Nature Comms 9, 4110) propose that the current Taupo eruption date is inaccurate and that the eruption occurred “…decades to two centuries…” after the published wiggle-match estimate of 232 ± 10 CE (2 s.d.) derived from a tanekaha (Phyllocladus trichomanoides) tree at the Pureora buried forest site (Hogg et al. 2012, The Holocene 22, 439-449). Holdaway et al. (2018) propose that trees growing at Pureora (and other near-source areas) that were killed and buried by the climactic ignimbrite event were affected by ¹⁴C-depleted (magmatic) CO₂. Holdaway et al.'s (2018) proposal utilises a wide range of published ¹⁴C data, but their work results in assertions that are implausible. Four parts to their hypothesis are considered here
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS
We present the results of a search for new, heavy particles that decay at a
significant distance from their production point into a final state containing
charged hadrons in association with a high-momentum muon. The search is
conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV
and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS
detector operating at the Large Hadron Collider. Production of such particles
is expected in various scenarios of physics beyond the standard model. We
observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the
neutralino lifetime. Limits are presented for different squark and neutralino
masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final
version to appear in Physics Letters
- …