78 research outputs found

    AN IMPLICATION OF ACTINOMYCETES ON HUMAN WELL-BEING: A REVIEW

    Get PDF
    This review conceptualizes about the actinomycetes and its contribution to human health by playing a key role as bioactive secondary metabolites, such as enzymes, antibiotics and pigments, leading to their diverse applications and use in various industries. These searches have been uncommonly successful, and around 66% of naturally happening antibiotics, including many medically important, have been isolated from actinomycetes. The speedy occurrence of antimicrobial resistance among pathogens has led to a renewed interest to search for novel antimicrobial agents, but these antibiotics are not enough for the treatment of all diseases because there is a berserk requirement for a novel actinomycetes to combat against the antibiotic-resistant strains of pathogenic microorganisms, which are quickly expanding bit by bit. Actinomycetes are the important providers to the pharmaceutical and other industries and are well known for their capacity to produce secondary metabolites many of which are active against pathogenic microorganisms

    Preliminary Phytochemical Analysis and Antioxidants Activities of Ethanolic Extract from Gomphrena serrata Whole Plant

    Get PDF
    The present study was designed to investigate the phytochemical analysis and antioxidant activities of the whole plant of Gomphrena serrata. Gomphrena serrata widely distributed in South America, North America, and India. These plant parts are used as traditional medicine for the treatment of several ailments. This study aims to assess the phytochemical and free radical scavenging of ethanolic extract of G. serrata present in the plant. The preliminary phytochemical study was performed by standard method. The whole plant of G. serrata proved the presence of bioactive constituents such as carbohydrates, alkaloids, steroids, glycosides, triterpenoids, protein and amino acids, saponins, as well as flavonoids. The in-vitro antioxidant study was performed on the ethanolic extract of shade-dried of the whole plant, which determined by hydrogen peroxide, hydroxyl radical, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) 100 µg/ml assay and was compared to ascorbic acid. The ethanolic extract of the whole plant of G. serrata shows the strong free radical scavenging activity. The present study was the proof for ethanol extract of G. serrata which have medicinally significant and bioactive compounds since these plant species are used as traditional medicine for the treatment of various diseases

    Mechanism Involved in Biofilm Formation of <em>Enterococcus faecalis</em>

    Get PDF
    Enterococci are commensal bacteria in the gastrointestinal flora of animals and humans. These are an important global cause of nosocomial infections. A Biofilm formation constitutes an alternative lifestyle in which microorganisms adopt a multi-cellular behavior that facilitates and prolongs survival in diverse environmental niches. The species of enterococcus forms the biofilm on biotic and abiotic surfaces both in the environment and in the healthcare settings. The ability to form biofilms is among the prominent virulence properties of enterococcus. The present chapter highlights the mechanisms underlying in the biofilm formation by enterococcus species, which influences in causing development of the diseases

    Production of monoclonal antibodies against serum immunoglobulins of black rockfish (Sebastes schlegeli Higendorf)

    Get PDF
    The present study was undertaken to produce monoclonal antibodies (MAbs) against immunoglobulin (Ig) purified from black rockfish (Sebastes schlegeli Higendorf) serum using protein A, mannan binding protein, and goat IgG affinity columns. These three different ligands were found to possess high affinity for black rockfish serum Ig. All of the Igs purified eluted at only 0.46 M NaCl concentration in anion exchange column chromatography and consisted of two bands at 70 kDa and 25 kDa in SDS-PAGE; they also had similar antigenicity for MAbs to Ig heavy chain in immunoblot assays. Therefore, black rockfish Ig is believed to exist as a single isotype within serum. The MAbs produced against Ig heavy chain reacted specifically with spots distributed over the pI range from 4.8 to 5.6 with a molecular weight of 70 kDa on two dimensional gel electrophoresis immunoblot profiles

    An overview of anti-diabetic plants used in Gabon: Pharmacology and Toxicology

    Get PDF
    © 2017 Elsevier B.V. All rights reserved.Ethnopharmacological relevance: The management of diabetes mellitus management in African communities, especially in Gabon, is not well established as more than 60% of population rely on traditional treatments as primary healthcare. The aim of this review was to collect and present the scientific evidence for the use of medicinal plants that are in currect by Gabonese traditional healers to manage diabetes or hyperglycaemia based here on the pharmacological and toxicological profiles of plants with anti-diabetic activity. There are presented in order to promote their therapeutic value, ensure a safer use by population and provide some bases for further study on high potential plants reviewed. Materials and methods: Ethnobotanical studies were sourced using databases such as Online Wiley library, Pubmed, Google Scholar, PROTA, books and unpublished data including Ph.D. and Master thesis, African and Asian journals. Keywords including ‘Diabetes’ ‘Gabon’ ‘Toxicity’ ‘Constituents’ ‘hyperglycaemia’ were used. Results: A total of 69 plants currently used in Gabon with potential anti-diabetic activity have been identified in the literature, all of which have been used in in vivo or in vitro studies. Most of the plants have been studied in human or animal models for their ability to reduce blood glucose, stimulate insulin secretion or inhibit carbohydrates enzymes. Active substances have been identified in 12 out of 69 plants outlined in this review, these include Allium cepa and Tabernanthe iboga. Only eight plants have their active substances tested for anti-diabetic activity and are suitables for further investigation. Toxicological data is scarce and is dose-related to the functional parameters of major organs such as kidney and liver. Conclusion: An in-depth understanding on the pharmacology and toxicology of Gabonese anti-diabetic plants is lacking yet there is a great scope for new treatments. With further research, the use of Gabonese anti-diabetic plants is important to ensure the safety of the diabetic patients in Gabon.Peer reviewedFinal Accepted Versio

    Gene expression analyses of immune responses in Atlantic salmon during early stages of infection by salmon louse (Lepeophtheirus salmonis) revealed bi-phasic responses coinciding with the copepod-chalimus transition

    Get PDF
    The salmon louse (Lepeophtheirus salmonis Krøyer), an ectoparasitic copepod with a complex life cycle causes significant losses in salmon aquaculture. Pesticide treatments against the parasite raise environmental concerns and their efficacy is gradually decreasing. Improvement of fish resistance to lice, through biological control methods, needs better understanding of the protective mechanisms. We used a 21 k oligonucleotide microarray and RT-qPCR to examine the time-course of immune gene expression changes in salmon skin, spleen, and head kidney during the first 15 days after challenge, which encompassed the copepod and chalimus stages of lice development. Results Large scale and highly complex transcriptome responses were found already one day after infection (dpi). Many genes showed bi-phasic expression profiles with abrupt changes between 5 and 10 dpi (the copepod-chalimus transitions); the greatest fluctuations (up- and down-regulation) were seen in a large group of secretory splenic proteases with unknown roles. Rapid sensing was witnessed with induction of genes involved in innate immunity including lectins and enzymes of eicosanoid metabolism in skin and acute phase proteins in spleen. Transient (1-5 dpi) increase of T-cell receptor alpha, CD4-1, and possible regulators of lymphocyte differentiation suggested recruitment of T-cells of unidentified lineage to the skin. After 5 dpi the magnitude of transcriptomic responses decreased markedly in skin. Up-regulation of matrix metalloproteinases in all studied organs suggested establishment of a chronic inflammatory status. Up-regulation of putative lymphocyte G0/G1 switch proteins in spleen at 5 dpi, immunoglobulins at 15 dpi; and increase of IgM and IgT transcripts in skin indicated an onset of adaptive humoral immune responses, whereas MHCI appeared to be down-regulated. Conclusions Atlantic salmon develops rapid local and systemic reactions to L. salmonis, which, however, do not result in substantial level of protection. The dramatic changes observed after 5 dpi can be associated with metamorphosis of copepod, immune modulation by the parasite, or transition from innate to adaptive immune responses

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link
    corecore