
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

142,000 180M

TOP 1%154

5,800



1

Chapter
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Abstract

Enterococci are commensal bacteria in the gastrointestinal flora of animals and 
humans. These are an important global cause of nosocomial infections. A Biofilm 
formation constitutes an alternative lifestyle in which microorganisms adopt a 
multi-cellular behavior that facilitates and prolongs survival in diverse environmental 
niches. The species of enterococcus forms the biofilm on biotic and abiotic surfaces 
both in the environment and in the healthcare settings. The ability to form biofilms 
is among the prominent virulence properties of enterococcus. The present chapter 
highlights the mechanisms underlying in the biofilm formation by enterococcus 
species, which influences in causing development of the diseases.

Keywords: biofilm, Enterococcus faecalis, pathogenesis, microcolony, quorum sensing

1. Introduction

Gram Positive bacterium has been renowned as a pathogen of hospitals acquired 
infectious. One among these bacteria is Enterococcus species. Enterococcus species 
are ubiquitous, commensally inhabitants of the gastrointestinal tract of humans 
and animals. These can be frequently isolated from the environmental sources such 
as soil, surface water, raw plant and animal products. Even these can screen from 
female genital tract, oropharynx and skin. Enterococcus sps belongs to the gram 
positive, facultative anaerobic cocci with an optimum growth temperature of 35°C 
[1]. There are around 36 species of enterococci have been reported; conversely 26 
species are associated with human infection. The most predominant human pathogen 
is Enterococcus faecalis, even Enterococcus faecium is one of the important pathogen 
which is prevalent increasing as hospital acquired infections. The other remaining 
enterococci species only accounts 5% of infections [2–4]. Some few examples of 
enterococcus species which are associated with human infections, E. avium, E. 
cecorum, E. cassseliflavus, E. durans, E. gallinarum, E. raffinosus [5, 6].

E. faecalis has now become the most common nosocomial pathogen and its 
virulence is increasing in clinical isolates. The presence and function of different 
suggested characteristics related virulence have been reported [7, 8]. The factor which 
influences the virulence is mediated through gelatinase production, enterococcus 
surface protein (ESP), aggregation substance (AS), and biofilm formation [9]. It 
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cause the following infections such as pelvic and abdominal infections, infections 
in the mouth especially after root canal surgery, infections in open wounds, a lesser 
known form of meningitis called enterococcal meningitis, infections in the blood 
called bacteremia and urinary tract infections.

Biofilms are surface attached, organized microbial communities made up of sessile 
cells (bacteria and /or fungi) embedded in an extracellular matrix composed of 
polysaccharides, DNA and other components.

2. Chronological background on biofilm

Generally bacterial cell grow in two modes; biofilm formation through aggregate 
and planktonic cell. It associated with microorganism in which cells stick to each other 
on a surface encased within matrix of extracellular polymeric substance produced by 
bacteria itself [10]. Antoni van Leeuwenhoek, the Dutch research, who discovered 
the simple microscope and observed ‘animalcule’ on surfaces of tooth and this event 
is known as discovery of biofilm. Characklis, in the year 1973 phrase that biofilms are 
not only tenacious but even resist to disinfectants (e.g. chlorine). In 1978, Costerton, 
defined the term biofilm and explained the importance of biofilm. Biofilms can be 
found in nature in all places like waste water, labs, and hospital settings. It forms as 
floating mat on the surface of liquid on both living and non-living surfaces [11].

3. Components of biofilm

Biofilm are produced from different group of organisms, the microbes cells produces 
the extracellular polymeric substances (EPS) such as DNA <1%, Polysaccharides 1–2%, 
proteins(includes enzymes) with <1–2%, RNA <1% and water with 97% are the major 
part of biofilm which is responsible for the flow of nutrients inside biofilm matrix [12]. 
The main two components of the biofilm that is water channel for nutrients transport and 
a region of densely packed cells having no prominent pores in it [12]. Another way micro-
bial cells in which biofilms are arranged with significant different physiology and physical 
properties. They will access of antibiotics and human immune system. The organism that 
produces biofilm has capability to bear and neutralize antimicrobial agents and result in 
prolonged treatment. The bacteria which produces the biofilm, switch on the genes that 
can activate the expression of stress genes which in turn switch to resistant phenotypes 
due to certain changes examples are as follows cell density, nutritional, temperature, pH 
and osmolarity. When the biofilm water channels are compared with system of circula-
tions showed that biofilms are considered primitive multi-cellular organism [13, 14]. The 
compositions of biofilms like DNA, proteins, polysaccharides and water will signify the 
biofilm integrity and making it resistant against different environmental factors [15].

4. Epidemiology of biofilm formation by Enterococcus faecalis

In the worldwide, the prevalence of production of biofilm varies to different part. 
The study reported in Rome, Italy, 80% of E. faecalis isolates have ability to form 
biofilms in the infected patients [16]. In India, a study has showed that 52% of E. 
faecalis isolated screened from clinical samples has showed the biofilm formation [17]. 
In China, Shenzhen Nanshan Hospital, the prevalence of E. faecalis biofilm formation 
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has showed 50.4% (57/113) in urinary tract infection isolates [18]. The biofilm forma-
tion in case of food isolates were less with 60% non-biofilm producers. The major 
ability in formation of biofilm was endodontic isolates with 73.7% was observed in 
the Department of Operative Dentistry and Periodontology, University of Freiburg 
Medical Center, Germany [19].

A study carried out Ahvaz teaching hospital, Iran demonstrated that high 
frequency 63% of biofilm formation in clinical isolates [20]. The E. faecalis bacterial 
isolated from patient with complicated UTI from department of Urology, Okayama 
University, Japan has showed the biofilm formation 64 (18.2%) and 156 (44.3%) 
exhibited strong and medium respectively [21]. A study reported at Malaysia, the 
E. faecalis isolates has showed the biofilm formation of 49% [22]. In the United 
Kingdom, 100% E. faecalis isolates produced biofilms, these isolates were from 
intravascular catheter-related bloodstream infections (CRBI) found to produce 
more biofilm than enterococcal isolates that cause non-CRBI [23]. A 93% of E. 
faecalis strains isolated from clinical samples especially fecal isolates have showed 
more biofilm formation in the United States [24]. In Spain, 57% of E. faecalis clini-
cal isolates represent the biofilm production [25]. Tertiary care hospital in India 
showed 26% isolates of E. faecalis having capability in forming biofilm [26].

5. Pathogenesis of biofilm in causing disease

Generally infectious is connected with biofilm primarily confine to particular 
location and though time detachment may occur. Further, the detached biofilms may 
result in bloodstream or urinary tract infections or in the production of blockage of 
blood flow [26]. In another side cells in biofilms are mostly resistant to antimicrobial 
agents and the host immune system. E. faecalis isolates which produces biofilms 
is 1000 times more resistant to antibodies, antimicrobial agents and phagocytosis 
process than non-biofilm producers. Consequently, infections caused from E. faecalis 
associated with biofilm aggravated in this case [27, 28].

In endocarditis infection a complex biofilm formed by E. faecalis and host 
components will be formed on cardiac valve. These biofilms causes disease is through 
three basic mechanisms. Firstly, the biofilms physically disrupts valve function and 
may cause leakage. Second, detachment of biofilm can be carried to a terminal point 
in the circulation and formation of emboli (blockage of the blood vessel). Finally, 
the biofilm provides continuous infection of the bloodstream even during antibiotic 
treatment. These can cause recurrent fever, chronic systemic inflammation and lead 
to other infection also [27, 29].

6. Mechanism steps involved in E. faecalis biofilm formation

It comprises of four stages; initial attachment, microcolony formation, biofilm 
maturation (which is in part governed by quorum sensing) and dispersal.

7. Initial attachment

A surface adhesion is the first step in establishing a biofilm, and a number 
of surface adhesions, proteases, and lipids are involved. The endocarditis and 
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biofilm-associated pilus (Ebp), which is composed of subunits A, B, and C, medi-
ates the adherence of biofilms on surface in-vitro and in-vivo [30–35]. The deletion 
of ebpABC attenuates binding to platelets, fibrinogen and collagen, reduces initial 
attachment, and thus impairs biofilm formation in-vitro [30, 32, 33].

In addition, Ebp contributed to early biofilm formation in in-vivo models of 
urinary tract infection (UTI), catheter associated UTI (CAUTI), and infectious 
endocarditis, in which bacteria with deletions of pilus components were substantially 
attenuated [30, 32, 33, 36]. Additionally, the absence of surface adhesions, such as 
aggregation substance (Agg), enterococcol surface protein (ESP), and adhesion 
to collagen from E. faecalis (Ace), reduced adhesion to cultured human cells and 
prevented biofilm formation in-vivo [37–41]. Bacteria deficient for Esp showed 
reduced initial attachment and decreased bladder colonization in a UTI ascending 
model, which is not unexpected since Esp binds fibrinogen and collagen, and these 
ligands are present in the bladder because Esp binds fibrinogen and collagen, and 
these ligands are present in the bladder [41, 42].

Ace is also involved in interacting with collagen, laminin, and dentin and deletion 
of Ace resulted in reduced colonization in rat endocarditis and UTI models [43–47]. 
As a result, Ace deletion in the peritonitis model did not reduce bacterial burden 
suggesting Ace-mediated biofilm formation is not relevant to peritoneal infection. By 
disparity, deletion of Agg reduced adherence to renal epithelial cells [38, 39], bind-
ing to lipoteichoic acid (LTA) of other E. faecalis cells (and therefore inter-bacterial 
clumping) and bacterial titers recovered from endocarditis vegetation on aortic heart 
valves. Agg cannot colonize the urinary tract, suggesting that Agg-mediated biofilms 
aren’t necessary for ascending UTI’s [48, 49].

In-vitro, biofilm associated glycolipid synthesis A (BgsA) contributes to initial 
adhesion and biofilm development, but its role in-vivo is unknown [50]. The 
extracellular secreted protein encoded by salB (Saga-Like Protein B) increased 
fibronectin and collagen binding but decreased biofilm formation paradoxically, 
which has hypothesized to be owing to the salB mutant cells decreased 
hydrophobicity. These investigations suggest that a variety of variables play a role 
in the initial attachment of bacteria, and that their contribution is likely to vary 
depending on the surface to which the bacteria adhere. As a result, focusing on a 
single component as anti-adherence or anti-biofilm strategy is unlikely to totally 
prevent enterococcal biofilm formation [37].

8. Microcolony formation

Bacteria proliferate and produce modest amounts of biofilm matrix to form 
aggregates known as microcolonies after first adhesion [51]. However, the enterococ-
cal mechanisms that drive the establishment of microcolonies are unknown, and no 
transcriptome data from early-stage biofilms or microcolonies is available. The impor-
tance of microcolonies for gut colonization has been demonstrated. E. faecalis coloni-
zation of the stomach of germ free mice resulted in discrete microcolonies covered in 
a fibrous sweater-like matrix within a week, rather than the largely 2D biofilm sheets 
(2–3 cells high) that are normally observed in biofilm models in-vitro [52].

Despite the fact that microcolonies are commonly assumed to be a temporary 
stage of early biofilm production, these data imply that microcolonies may represent 
a mature biofilm stage in this niche that is particularly crucial for gut colonization. 
In addition, in-vitro enterococcal microcolonies emerge in response to antibiotic 
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therapy [53, 54]. Biofilms treated with sub-inhibitory levels of daptomycin began to 
restructure extensively into microcolonies as early as 8 hours after drug exposure, in 
contrast to typical biofilm sheets. Even in the absence of antibiotics, deletion mutants 
of eapOX, which encodes a glycosyl-transferase involved in the formation of cell wall 
associated rhamnopolysaccharide (Epa), developed microcolonies in-vitro. In contrast 
to the monolayer biofilms, these epaOX microcolonies had lower structural integrity, 
as shown by their facile separation following washing.

9. Biofilm growth and maturation

Active growth and synthesis of extracellular matrix components such as 
extracellular DNA (eDNA), polysaccharides, LTA, and extracellular proteases are 
required for biofilm development. eDNA is the best studied matrix component 
of enterococcal biofilms:eDNA can be found at the bacterial septum, as part of 
intercellular filamentous structures, and as part of the larger biofilm matrix, and its 
release from cells is controlled by autolysin Atla [55–57].

eDNA-associated cells showed no significant cell lysis and had a membrane 
potential [55], implying that eDNA is liberated from metabolically active cells. As 
a result, DNase treatment decreased biofilm stability and increased detachment 
[58, 59], whereas atlA deletion decreased eDNA release and biofilm formation 
[56]. Despite the lack of evidence that eDNA influences the spatial organization of 
enterococcal biofilms (as has been postulated for other bacterial species), eDNA 
remains a potential therapeutic target.

Biofilm production is also aided by non-proteinaceous cell surface components 
such as glycoproteins, polysaccharides, and modified lipids. The dltABCD operons are 
involved in the production of D-alanine esters of LTA, which are an important compo-
nent of Gram-positive bacteria’s cell wall, and deletion of this operons decreased biofilm 
formation in-vitro, decreased adherence to epithelial cells, and increased susceptibility 
to antimicrobial peptides [60]. Biofilm on plastic D (BopD), a potential sugar-binding 
transcriptional regulator, also promotes to biofilm development in-vitro [61].

The deletion of bopABC, which is located upstream of bopD, boosted biofilm 
growth in glucose but decreased biofilm growth and colonization levels in the murine 
gut, implying that the ability to utilize maltose is required for biofilm growth in the 
gut. MprF2, a paralogue of multiple peptide resistance factor (MprF), was likewise 
found to promote eDNA release and biofilm formation [61–63]. MprF2 reduces the 
net positive charge of the membrane via aminoacylating phosphatidylglyceroal to 
mediate electrostatic repulsion of cationic antimicrobial peptides.

While deletion of MprF2 had no effect on biofilm persistence in a mouse 
bacteremia model, deletion of both MprF1 and MprF2 reduced biofilm persistence 
in a wound infection model, suggesting that cell membrane charge may play a role 
in biofilm formation and pathogenicity in-vivo [63, 64]. These findings back up 
the theory that cell surface glycoproteins, membrane phosphatidylglycerol, and 
polysaccharides all play a role in biofilm development.

The quorum sensing response regulator FsrA regulates matrix remodeling by 
upregulating the expression of gelE, SprE, and altA [57, 58, 65–67]. The proteases 
gelE and sprE were found to diminish biofilm formation in-vitro and bacterial load 
in numerous in-vivo models [68–71]. However, in a rabbit endocarditis model, loss 
of gelE alone increased fibrinous matrix formation in aotic vegetation, leading to 
endocarditis as shown in the Table 1 [70].
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In-vitro, sprE deletion increased autolysis and eDNA release and accelerated 
biofilm development, but gelE deletion inhibited eDNA releaseand elevated ace 
expression, which may increase surface attachment but make the biofilm  
detachable [71, 72].

10. Quorum sensing

Population density-dependent signaling influences biofilm formation [73, 74]. 
Despite the fact that quorum sensing and peptide pheromone signaling are known 
to coordinate gene expression and direct enterococcus biofilm growth, there have 
been few research on these tiny signaling molecules and secondary messengers in 

Name of the Gene Gene code Role

D-alanine- d-alanine 

ligase

ddl It involved in metabolism process (d-ala) especially for bacterial 

peptidoglycan biosynthesis. Its role in cell wall integrity and biofilm 

formation.

Cytolysin cyl It a secreted toxin expressed in response to pheromones, contributes 

to the pathogenicity of E. faecalis by causing blood hemolysis.

Gelatinase gelE It hydrolyzes the gelatin and ability to damage host tissues plays a 

vital role in spreading of enterococci in their host. It promotes the 

aggregation of the cells in microcolonies which constitutes the initial 

step of biofilm formation.

Serine protease sprE It hydrolyzes the casein, quorum sensing and autolysis (release of 

eDNA)

Fecal streptococci 

regulator locus genes

fsrA, fsrB, 

fsrC

It the major quorum sensing in E. faecalis, the fsr regulator locus, is 

encoded by fsrA, fsrB and fsrC genes which regulate the expression of 

both gelatinase and serine protease. It controls biofilm development 

through regulating the production of gelatinase.

Biofilm associated pili ebp It is the protein organelles, anchored to the surface of the bacterium, 

that interact with the external environment. It role in biofilm 

formation, initial attachment and IE.

Adhesion to collagen 

of E. faecalis

ace A surface protein that facilitates the bacterial adherence to collagen 

is the adhesion to collagen of E. faecalis. It play key role in adherence 

and colonization process.

Aggregation 

substance

agg A surface protein expressed in response to pheromone induction that 

mediates the adherence of E. faecalis to renal epithelial cells. It plays 

important role in adherence to and colonization of host tissues.

Enterococcal 

fibronectin-binding 

protein A

efbA It is an adhesin, localized on the outer surface of E. faecalis that 

confers adhesion to immobilized fibronectin.

Enterococcal surface 

protein

esp It promotes primary attachment and biofilm formation.

LuxS/autoincuder 

−2 (AI-2) quorum 

sensing system

luxS It plays role in interspecies communication and involved in bacterial 

virulence, persistence infections and biofilms

Table 1. 
Different quorum sensing genes signaling molecules involved in Enterococcus quorum sensing system and virulence 
factors production.
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enterococci. The cCF10 peptide pheromone, which facilitates the transfer of the 
conjugative plasmid pCF10, is an exception. This plasmid has the ability to transfer 
antibiotic resistance genes as well as virulence determinants like Agg across cells 
[75–79]. The buildup of cCF10, which stimulates conjugation proteins, is required 
for pCF10 transfer. The mechanism underpinning peptide pheromone-mediated 
gene regulation and plasmid transfer has been well documented, and it was recently 
demonstrated in mice to promote pCF10 transmission between E. faecalis cells in the 
gut [79, 80]. The immature peptide pheromones cAD1 and cCF10 are processed by 
the membrane protease Eep. Eep also facilities the proteolytic processing of RsiV, 
the anti-sigma factor for sigV, resulting in improved stress resistance. A sigV mutant 
showed similar symptoms, indicating that Eep is involved in the regulation of sigV 
production [81–83].

In-vitro, Eep, together with AhrC and the ArgR family transcriptional regula-
tors, leads to biofilm formation, and deletion of the genes encoding either protein 
lowered bacterial burden in UTI and endocarditis models [84–86]. Furthermore, 
eep deletion mutants develop tiny aggregates unlike wild-type biofilms. FsrABC 
is another quorum-sensing system. FsrC is a membrane sensor kinase that detects 
density-dependent accumulation of the FsrB peptide and triggers a signal to the 
FsrA response regulator [87]. Because this system controls multiple biofilm-related 
genes and operons (such as bopABCD, ebpABC, GelE, and SprE), knocking 
down fsrABC entirely eliminates biofilm formation [88]. FsrD, a precursor for 
the cyclic peptide gelatinase biosynthesis activating pheromone (GBAP), is also 
controlled by the Fsr quorum sensing system as shown in the Table 1 [89]. Finally, 
autoinducer 2 (Al-2) is involved in E. faecalis biofilm formation and is produced 
by S-ribosylhomocysteinelyase (LuxS). In-vitro biofilm development of E. faecalis 
is increased by Al-2 supplementation, while luxS deletion causes aberrant biofilm 
production with aggregation a dense structure, in contrast to the confluent mono-
layers of wild type in-vitro biofilms [90, 91].

11. Factors influencing for the formation of biofilms in E. faecalis

11.1 Dlt gene

A Lipoteichoic Acid, component of E. faecalis, the most common organism in 
root canals, develops colonies on the dentin surface (LTA). LTA is a biofilm-forming 
component of E. faecalis that functions as a receptor molecule on receptor cells during 
the aggregation process. E. faecalis antigen recognizes immune cells via pattern rec-
ognition receptors (PRRs) and induces the release of proinflammatory cytokines like 
TNF alpha (TNFα), interleukin 1 beta (IL-1β), IL-6, and IL-8 [92]. LTA causes cells to 
produce cytokines, which is followed by the activation of Nuclear Factors kβ (NF-kβ), 
which promotes cytokines release as shown in the Table 2 [93].

The release of these cytokines causes the dlt gene in LTA to fabricate D-alanine 
instantly, causing other bacteria to assist in the formation of biofilms [94, 95]. 
The D-Ala-LTA gene is triggered by the surface protein of Gram-Positive bacteria. 
Cationic homeostasis and autolytic activity are controlled by this gene. Additionally, 
it is involved in the assimilation of metal cations as well as the electromechanical 
repair of bacterial cell walls [94]. These capabilities will enhance bacterial cell system 
transfer while even increasing autolytic activity. The host’s defense system will be 
weakened by the modified tick.
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11.2 Cytolisin lytic enzymes

A lytic enzyme operated on by cytolysin is the one of E. faecalis bacteria’s viru-
lence factors. Apart from lysing erythrocytes, collagen fragmentation caused by this 
enzyme can cause tissue injury at the site of inflammation. The cylLL and cylLs genes 
on cytolysin promote this role, allowing E. faecalis to survive longer. E. faecalis is the 
most common microbe found in root canals [92, 96]. Other bacteria will be inhibited 
by E. faecalis cytolysin. The cylLL and cylLS genes in E. faecalis cytolysin encode 
structural cytolysin subunits. They create cytolysin in anaerobic circumstances and 
respond to oxygen depletion in root canals by producing cytolysin as shown in the 
Table 2.

11.3 Hyaluronidase

Hyaluronidase is a protein to be found in E. faecalis that helps the bacteria and 
toxins progress to the host tissue. Other bacteria will continue to migrate from the 
root canal to the periapical lesions as a result of hyaluronidase. Furthermore, hyal-
uronidase stimulates the production of toxins by other bacteria, which increases 
damage and inflammation. This stipulation is very beneficial for the development of 
E. faecalis [97, 98].

11.4 Dentine matrix structurization

E. faecalis will increase resistance to antimicrobial treatments by increasing the bio-
film structural characteristics at the primary site of E. faecalis invasion, notably dentin. 
As a result, E. faecalis is known to delay antimicrobial agent penetration through the 
biofilm matrix by altering the growth rate of other microbes in biofilm development 
and encouraging changes in the physiological shape of biofilm growth in dentin.

When E. faecalis is cultivated in nutrient-poor media, it forms thicker biofilms 
than when cultured in nutrient-rich media [99]. Under stress inducing mechanism in 

Factors Function

dlt gene It as acts biofilm forming component during aggregation process. It causes cells to 

produce cytokines. It controls cationic homeostasis and autolytic activity

Cytolysin lytic 

enzymes

It is the virulence factors, play role in lysing erythrocytes and collagen fragmentation. The 

cylLL and cylLS genes on cytolysin promoted for longer survive of E. faecalis.

Hyaluronidase It acts as toxin protein for the progression of host tissue increase damage and 

inflammation. It beneficial protein for the development of E. faecalis.

Dentine Matrix It increases the enhancement of biofilm formation through dentin. It also resists the 

antimicrobial treatment by delay penetration of the drug through the biofilm matrix by 

altering/changing the physiological shaper of biofilm growth in dentin.

Nutrients Glucose is the major determinate in the formation of E. faecalis. It utilizes as the carbon 

source and hydrolyzes the substrate for its survival.

Environmental Physicochemical properties of the surface may exert a strong influence on the rate 

and extent of attachment. Temperature, cations, and presence of antimicrobial agents 

influence the attachment. The optimum temperature 37°C, pH -8.5 increase the 

production biofilm formation.

Table 2. 
Factors influencing for the formation of biofilms in E. faecalis.
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other bacteria that can cause a more resilient E. faecalis biofilm. Besides E. faecalis bio-
films profitably renew themselves. Furthermore, E. faecalis will receive vital carbon 
by hydrolyzing the substrate required for survival [23].

E. faecalis will continue to grow and develop in environments with or without 
oxygen with extreme alkaline pH by penetrating cell membrane ions and increas-
ing the cytoplasmic’s buffer capacity [100]. The pH balance of the biofilm is always 
maintained by bacteria by assimilation of protons into the cell, resulting in a lower 
internal cell pH. As a result, the dentin buffer capacity is unable to keep the pH in the 
dentinal tubule constant, and E. faecalis survives [101].

Other investigations found in E. faecalis that the ability to promote apatite 
re-deposition in the forming biofilm is responsible for its persistence after root 
canal therapy. Besides this, the dentin matrix is composed of chlorapatite Ca5 
(PO4)3 [102]. Different varieties of apatite have different dissolving tolerances. Till 
date, chlorapatite has been considered as a weaker apatite than hydroxyapatite and 
fluorapatite in terms of nanostructure [102, 103]. Although it is known that calcium 
hydroxide can stimulate the formation of hard tissue by raising the Ca2+ ion to 
increase defense through dentin mineralization, the type of apatite that makes up the 
host dentin will influence the results [104, 105].

However, no further research into the drug resistance of this inorganic dentin 
material’s nanostructures has been done. Furthermore, dentin deterioration is not 
solely dependent on inorganic elements. Collagen makes up 20% of the organic 
dentin, which accounts for 85% of the total [103]. Gelatinase, an E. faecalis virulence 
component, is required for hydrolyzing host collagen, High gelatinase levels have 
been linked to dentin organic matrix degradation [106, 107].

11.5 Tolerance for antimicrobial therapy

Antimicrobial therapy is known to be limited to eliminating free microbes but not 
to remove cells bound to the biofilm so that re-infection can occur [100]. As a root 
canal medication, calcium hydroxide is currently the most popular option among 
dentists. E. faecalis is known to be resistant to calcium hydroxide. This is a serious 
clinical problem. Every root canal treatment failure, which is documented widely, has 
linked to E. faecalis [101]. Calcium hydroxide is known to prevent the acid reaction 
that happens as a result of the inflammatory response. This lactic acid generated by 
osteoclasts to absorb hard tissue will be neutralized by the alkaline pH [102, 103].

12. Conclusion

Enterococcus faecalis is one of the most predominant organism in nosocomial infec-
tion and also developed the drug resistance. The intrinsic virulence factors E. faecalis 
are associated in biofilm formation and other environmental factor and signals are 
alarming the biofilm formation. A genome wide study is required to know the role 
of genetic and environmental factors in development of biofilm and mounting the 
superior strategies for biofilm control in E. faecalis isolates.
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