10 research outputs found
Recommended from our members
A Kalman-filter bias correction of ozone deterministic, ensemble-averaged, and probabilistic forecasts
Kalman filtering (KF) is used to postprocess numerical-model output to estimate systematic errors in surface ozone forecasts. It is implemented with a recursive algorithm that updates its estimate of future ozone-concentration bias by using past forecasts and observations. KF performance is tested for three types of ozone forecasts: deterministic, ensemble-averaged, and probabilistic forecasts. Eight photochemical models were run for 56 days during summer 2004 over northeastern USA and southern Canada as part of the International Consortium for Atmospheric Research on Transport and Transformation New England Air Quality (AQ) Study. The raw and KF-corrected predictions are compared with ozone measurements from the Aerometric Information Retrieval Now data set, which includes roughly 360 surface stations. The completeness of the data set allowed a thorough sensitivity test of key KF parameters. It is found that the KF improves forecasts of ozone-concentration magnitude and the ability to predict rare events, both for deterministic and ensemble-averaged forecasts. It also improves the ability to predict the daily maximum ozone concentration, and reduces the time lag between the forecast and observed maxima. For this case study, KF considerably improves the predictive skill of probabilistic forecasts of ozone concentration greater than thresholds of 10 to 50 ppbv, but it degrades it for thresholds of 70 to 90 ppbv. Moreover, KF considerably reduces probabilistic forecast bias. The significance of KF postprocessing and ensemble-averaging is that they are both effective for real-time AQ forecasting. KF reduces systematic errors, whereas ensemble-averaging reduces random errors. When combined they produce the best overall forecast
Recommended from our members
Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts
Forecasts from seven air quality models and surface ozone data collected over the eastern USA and southern Canada during July and August 2004 provide a unique opportunity to assess benefits of ensemble-based ozone forecasting and devise methods to improve ozone forecasts. In this investigation, past forecasts from the ensemble of models and hourly surface ozone measurements at over 350 sites are used to issue deterministic 24-h forecasts using a method based on dynamic linear regression. Forecasts of hourly ozone concentrations as well as maximum daily 8-h and 1-h averaged concentrations are considered. It is shown that the forecasts issued with the application of this method have reduced bias and root mean square error and better overall performance scores than any of the ensemble members and the ensemble average. Performance of the method is similar to another method based on linear regression described previously by Pagowski et al., but unlike the latter, the current method does not require measurements from multiple monitors since it operates on individual time series. Improvement in the forecasts can be easily implemented and requires minimal computational cost
Marine cold-air outbreaks in the future: an assessment of IPCC AR4 model results for the Northern Hemisphere
For many locations around the globe some of the most severe weather is associated with outbreaks of cold air over relatively warm oceans, referred to here as marine cold-air outbreaks (MCAOs). Drawing on empirical evidence, an MCAO indicator is defined here as the difference between the skin potential temperature, which over open ocean is the sea surface potential temperature, and the potential temperature at 700 hPa. Rare MCAOs are defined as the 95th percentile of this indicator. Climate model data that have been provided as part of the Intergovernmental Panel on Climate Change (IPCC) Assessment Report Four (AR4) were used to assess the models' projections for the twenty-first century and their ability to represent the observed climatology of MCAOs. The ensemble average of the models broadly captures the observed spatial distribution of the strength of MCAOs. However, there are some significant differences between the models and observations, which are mainly associated with simulated biases of the underlying sea ice, such as excessive sea-ice extent over the Barents Sea in most of the models. The future changes of the strength of MCAOs vary significantly across the Northern Hemisphere. The largest projected weakening of MCAOs is over the Labrador Sea. Over the Nordic seas the main region of strong MCAOs will move north and weaken slightly as it moves away from the warm tongue of the Gulf Stream in the Norwegian Sea. Over the Sea of Japan there is projected to be only a small weakening of MCAOs. The implications of the results for mesoscale weather systems that are associated with MCAOs, namely polar lows and arctic fronts, are discussed
Multimodel ensemble simulations of present-day and near-future tropospheric ozone
Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions scenarios, broadly representing “optimistic,” “likely,” and “pessimistic” options, are compared to a base year 2000 simulation. This base case realistically represents the current global distribution of tropospheric ozone. A further set of simulations considers the influence of climate change over the same time period by forcing the central emissions scenario with a surface warming of around 0.7K. The use of a large multimodel ensemble allows us to identify key areas of uncertainty and improves the robustness of the results. Ensemble mean changes in tropospheric ozone burden between 2000 and 2030 for the 3 scenarios range from a 5% decrease, through a 6% increase, to a 15% increase. The intermodel uncertainty (±1 standard deviation) associated with these values is about ±25%. Model outliers have no significant influence on the ensemble mean results. Combining ozone and methane changes, the three scenarios produce radiative forcings of -50, 180, and 300 mW m-2, compared to a CO2 forcing over the same time period of 800–1100 mW m-2. These values indicate the importance of air pollution emissions in short- to medium-term climate forcing and the potential for stringent/lax control measures to improve/worsen future climate forcing. The model sensitivity of ozone to imposed climate change varies between models but modulates zonal mean mixing ratios by ±5 ppbv via a variety of feedback mechanisms, in particular those involving water vapor and stratosphere-troposphere exchange. This level of climate change also reduces the methane lifetime by around 4%. The ensemble mean year 2000 tropospheric ozone budget indicates chemical production, chemical destruction, dry deposition and stratospheric input fluxes of 5100, 4650, 1000, and 550 Tg(O3) yr-1, respectively. These values are significantly different to the mean budget documented by the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR). The mean ozone burden (340 Tg(O3)) is 10% larger than the IPCC TAR estimate, while the mean ozone lifetime (22 days) is 10% shorter. Results from individual models show a correlation between ozone burden and lifetime, and each model's ozone burden and lifetime respond in similar ways across the emissions scenarios. The response to climate change is much less consistent. Models show more variability in the tropics compared to midlatitudes. Some of the most uncertain areas of the models include treatments of deep tropical convection, including lightning NO x production; isoprene emissions from vegetation and isoprene's degradation chemistry; stratosphere-troposphere exchange; biomass burning; and water vapor concentrations