1,382 research outputs found

    Statistical properties of eigenstate amplitudes in complex quantum systems

    Get PDF
    We study the eigenstates of quantum systems with large Hilbert spaces, via their distribution of wavefunction amplitudes in a real-space basis. For single-particle 'quantum billiards', these real-space amplitudes are known to have Gaussian distribution for chaotic systems. In this work, we formulate and address the corresponding question for many-body lattice quantum systems. For integrable many-body systems, we examine the deviation from Gaussianity and provide evidence that the distribution generically tends toward power-law behavior in the limit of large sizes. We relate the deviation from Gaussianity to the entanglement content of many-body eigenstates. For integrable billiards, we find several cases where the distribution has power-law tails.Comment: revised version, with appendices; 15 pages, 10 figure

    Chemical composition and physical characteristics of water caltrop during growth

    Get PDF
    [[abstract]]BACKGROUND: The aim of this study was to monitor the chemical composition and physical and morphological characteristics of two varieties of water caltrop during growth in order to determine the optimal harvesting time. RESULTS: The dry matter, starch and amylose contents and alpha-amylase activity of fruits of both water caltrop varieties increased during the growth period. Mature fruits contained 142-156 g starch kg(-1) fresh sample and provided 684-697 kcal total energy kg(-1) fresh sample. Dry matter content and bulk density increased significantly from 67 to 207 g kg(-1) and from 0.57 to 1.58 g ml(-1) respectively as growth progressed. Morphological analysis showed that the size and number of starch granules increased as growth progressed. Moreover, both varieties contained substantial amounts of essential amino acids, most of which appeared to be superior to the FAO/WHO reference pattern. CONCLUSION: According to the chemical composition and physical characteristics of water caltrop determined in this study, the optimal harvesting time is 42 days after fruit development. (C) 2009 Society of Chemical Industr

    Genetic diversity among Toxoplasma gondii isolates from different hosts and geographical locations revealed by analysis of ROP13 gene sequences

    Get PDF
    Toxoplasma gondii can infect almost all the warm-blooded animals and human beings, causing serious public health problems and economic losses worldwide. Rhoptry protein 13 (ROP13) plays some roles in the invasion process of T. gondii. In this study, sequence variation in ROP13 gene among 14 T. gondii isolates from different geographical locations and hosts was examined. The ROP13 gene was amplified from individual isolates and sequenced. Results show that the length of the ROP13 sequences was 1203 bp. In total, there were 44 variable nucleotide positions in the ROP13 sequences, and sequence variations were 0.1 to 2.0% among the 14 examined T. gondii isolates, representing higher rate in transversion than in transition. Intra-specific nucleotide variations were mainly at the second codon positions. Phylogenetic analysis of the 14 examined T. gondii isolates indicate that the ROP13 sequence was not a suitable genetic marker to differentiate T. gondii isolates of different genotypes from different hosts and geographical regions. Low variation in ROP13 gene sequence may suggest that ROP13 gene could represent a good vaccine candidate against toxoplasmosis.Key words: Toxoplasma gondii, toxoplasmosis, rhpotry protein 13 (ROP13), sequence variation, phylogenetic analysis

    Dynamic regulation of canonical TGF beta signalling by endothelial transcription factor ERG protects from liver fibrogenesis

    Get PDF
    The role of the endothelium in protecting from chronic liver disease and TGFÎČ-mediated fibrosis remains unclear. Here we describe how the endothelial transcription factor ETS-related gene (ERG) promotes liver homoeostasis by controlling canonical TGFÎČ-SMAD signalling, driving the SMAD1 pathway while repressing SMAD3 activity. Molecular analysis shows that ERG binds to SMAD3, restricting its access to DNA. Ablation of ERG expression results in endothelial-to-mesenchymal transition (EndMT) and spontaneous liver fibrogenesis in EC-specific constitutive hemi-deficient (ErgcEC-Het) and inducible homozygous deficient mice (ErgiEC-KO), in a SMAD3-dependent manner. Acute administration of the TNF-α inhibitor etanercept inhibits carbon tetrachloride (CCL4)-induced fibrogenesis in an ERG-dependent manner in mice. Decreased ERG expression also correlates with EndMT in tissues from patients with end-stage liver fibrosis. These studies identify a pathogenic mechanism where loss of ERG causes endothelial-dependent liver fibrogenesis via regulation of SMAD2/3. Moreover, ERG represents a promising candidate biomarker for assessing EndMT in liver disease

    Caspase-11 Controls Interleukin-1 beta Release through Degradation of TRPC1

    Get PDF
    Caspase-11 is a highly inducible caspase that controls both inflammatory responses and cell death. Caspase-11 controls interleukin 1 beta (IL-1 beta) secretion by potentiating caspase-1 activation and induces caspase-1-independent pyroptosis downstream of noncanonical NLRP3 inflammasome activators such as lipopolysaccharide (LPS) and Gram-negative bacteria. However, we still know very little about the downstream mechanism of caspase-11 in regulating inflammation because the known substrates of caspase-11 are only other caspases. Here, we identify the cationic channel subunit transient receptor potential channel 1 (TRPC1) as a substrate of caspase-11. TRPC1 deficiency increases the secretion of IL-1 beta without modulating caspase-1 cleavage or cell death in cultured macrophages. Consistently, trpc1(-/-) mice show higher IL-1 beta secretion in the sepsis model of intraperitoneal LPS injection. Altogether, our data suggest that caspase-11 modulates the cationic channel composition of the cell and thus regulates the unconventional secretion pathway in a manner independent of caspase-1

    Nanogrids and Beehive-Like Nanostructures Formed by Plasma Etching the Self-Organized SiGe Islands

    Get PDF
    A lithography-free method for fabricating the nanogrids and quasi-beehive nanostructures on Si substrates is developed. It combines sequential treatments of thermal annealing with reactive ion etching (RIE) on SiGe thin films grown on (100)-Si substrates. The SiGe thin films deposited by ultrahigh vacuum chemical vapor deposition form self-assembled nanoislands via the strain-induced surface roughening (Asaro-Tiller-Grinfeld instability) during thermal annealing, which, in turn, serve as patterned sacrifice regions for subsequent RIE process carried out for fabricating nanogrids and beehive-like nanostructures on Si substrates. The scanning electron microscopy and atomic force microscopy observations confirmed that the resultant pattern of the obtained structures can be manipulated by tuning the treatment conditions, suggesting an interesting alternative route of producing self-organized nanostructures

    HIV-1 Vpr-Induced Apoptosis Is Cell Cycle Dependent and Requires Bax but Not ANT

    Get PDF
    The HIV-1 accessory protein viral protein R (Vpr) causes G(2) arrest and apoptosis in infected cells. We previously identified the DNA damage–signaling protein ATR as the cellular factor that mediates Vpr-induced G(2) arrest and apoptosis. Here, we examine the mechanism of induction of apoptosis by Vpr and how it relates to induction of G(2) arrest. We find that entry into G(2) is a requirement for Vpr to induce apoptosis. We investigated the role of the mitochondrial permeability transition pore by knockdown of its essential component, the adenine nucleotide translocator. We found that Vpr-induced apoptosis was unaffected by knockdown of ANT. Instead, apoptosis is triggered through a different mitochondrial pore protein, Bax. In support of the idea that checkpoint activation and apoptosis induction are functionally linked, we show that Bax activation by Vpr was ablated when ATR or GADD45α was knocked down. Certain mutants of Vpr, such as R77Q and I74A, identified in long-term nonprogressors, have been proposed to inefficiently induce apoptosis while activating the G(2) checkpoint in a normal manner. We tested the in vitro phenotypes of these mutants and found that their abilities to induce apoptosis and G(2) arrest are indistinguishable from those of HIV-1(NL4–3) vpr, providing additional support to the idea that G(2) arrest and apoptosis induction are mechanistically linked

    Molecular Prognostic Prediction for Locally Advanced Nasopharyngeal Carcinoma by Support Vector Machine Integrated Approach

    Get PDF
    BACKGROUND:Accurate prognostication of locally advanced nasopharyngeal carcinoma (NPC) will benefit patients for tailored therapy. Here, we addressed this issue by developing a mathematical algorithm based on support vector machine (SVM) through integrating the expression levels of multi-biomarkers. METHODOLOGY/PRINCIPAL FINDINGS:Ninety-seven locally advanced NPC patients in a randomized controlled trial (RCT), consisting of 48 cases serving as training set and 49 cases as testing set of SVM models, with 5-year follow-up were studied. We designed SVM models by selecting the variables from 38 tissue molecular biomarkers, which represent 6 tumorigenesis signaling pathways, and 3 EBV-related serological biomarkers. We designed 3 SVM models to refine prognosis of NPC with 5-year follow-up. The SVM1 displayed highly predictive sensitivity (sensitivity, specificity were 88.0% and 81.9%, respectively) by integrating the expression of 7 molecular biomarkers. The SVM2 model showed highly predictive specificity (sensitivity, specificity were 84.0% and 94.5%, respectively) by grouping the expression level of 12 molecular biomarkers and 3 EBV-related serological biomarkers. The SVM3 model, constructed by combination SVM1 with SVM2, displayed a high predictive capacity (sensitivity, specificity were 88.0% and 90.3%, respectively). We found that 3 SVM models had strong power in classification of prognosis. Moreover, Cox multivariate regression analysis confirmed these 3 SVM models were all the significant independent prognostic model for overall survival in testing set and overall patients. CONCLUSIONS/SIGNIFICANCE:Our SVM prognostic models designed in the RCT displayed strong power in refining patient prognosis for locally advanced NPC, potentially directing future target therapy against the related signaling pathways

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore