95 research outputs found
Orientation Sensitivity at Different Stages of Object Processing: Evidence from Repetition Priming and Naming
An ongoing debate in the object recognition literature centers on whether the shape representations used in recognition are coded in an orientation-dependent or orientation-invariant manner. In this study, we asked whether the nature of the object representation (orientation-dependent vs orientation-invariant) depends on the information-processing stages tapped by the task
Longitudinal Study of the Dynamics of Vaginal Microflora during Two Consecutive Menstrual Cycles
Although the vaginal microflora (VMF) has been well studied, information on the fluctuation of the different bacterial species throughout the menstrual cycle and the information on events preceding the presence of disturbed VMF is still very limited. Documenting the dynamics of the VMF during the menstrual cycle might provide better insights. In this study, we assessed the presence of different Lactobacillus species in relation to the BV associated species during the menstrual cycle, assessed the influence of the menstrual cycle on the different categories of vaginal microflora and assessed possible causes, such as menstruation and sexual intercourse, of VMF disturbance. To our knowledge, this is the first longitudinal study in which swabs and Gram stains were available for each day of two consecutive menstrual cycles, whereby 8 grades of VMF were distinguished by Gram stain analysis, and whereby the swabs were cultured every 7(th) day and identification of the bacterial isolates was carried out with a molecular technique.status: publishe
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Biodiversity of the Deep-Sea Continental Margin Bordering the Gulf of Maine (NW Atlantic): Relationships among Sub-Regions and to Shelf Systems
Background: In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding
the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin
remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits
development of alternatives for conservation and management.
Methodology/Principal Findings: We use data from the published literature, unpublished studies, museum records and
online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf
of Maine (39–43uN, 63–71uW, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of
megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the
amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly
distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly
related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are
relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing
distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests
the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of
species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered.
Conclusions/Significance: The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability
to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling
biases, life-history characteristics of target species, and the lack of trained taxonomists
Analysis of arterial intimal hyperplasia: review and hypothesis
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology? Hypothesis: I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it "benign intimal hyperplasia". However, normal or "benign " intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates earl
Science Priorities for Seamounts: Research Links to Conservation and Management
Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal “proxies”, and ecological risk assessment
Ratios of 15N/12C and 4He/12C inclusive electroproduction cross sections in the nucleon resonance region
The (W,Q2)-dependence of the ratio of inclusive electron scattering cross
sections for 15N/12C was determined in the kinematic range 0.8<W<2 GeV and
0.2<Q2<1 GeV2 using 2.285 GeV electrons and the CLAS detector at Jefferson Lab.
The ratios exhibit only slight resonance structure, in agreement with a simple
phenomenological model and an extrapolation of DIS ratios to low Q2. Ratios of
4He/12C using 1.6 to 2.5 GeV electrons were measured with very high statistical
precision, and were used to correct for He in the N and C targets. The (W,Q2)
dependence of the 4He/12C ratios is in good agreement with the phenomenological
model, and exhibit significant resonance structure centered at W=0.94, 1.23 and
1.5 GeV.Comment: 13 pages, 2 figures. Significantly shortened version. Results
unchanged. Small additions for Phys. Rev.
Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run
Peer reviewe
Measurement of the Top Pair Production Cross Section in the Dilepton Decay Channel in ppbar Collisions at sqrt s = 1.96 TeV
Submitted to Phys. Rev. DA measurement of the \ttbar production cross section in \ppbar collisions at = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb is: \sigma_{\ttbar} = 6.27 0.73(stat) 0.63(syst) 0.39(lum) pb. for an assumed top mass of 175 GeV/.A measurement of the tt̅ production cross section in pp̅ collisions at √s=1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb-1 is σtt̅ =6.27±0.73(stat)±0.63(syst)±0.39(lum) pb. for an assumed top mass of 175 GeV/c2.Peer reviewe
- …