311 research outputs found

    Functional Selectivity Does Not Predict Antinociceptive/Locomotor Impairing Potencies of NOP Receptor Agonists

    Get PDF
    Nociceptin/orphanin FQ controls several functions, including pain transmission, via stimulation of the N/OFQ peptide (NOP) receptor. Here we tested the hypothesis that NOP biased agonism may be instrumental for identifying innovative analgesics. In vitro experiments were performed with the dynamic mass redistribution label free assay and the NOP non-peptide agonists Ro 65-6570, AT-403 and MCOPPB. In vivo studies were performed in wild type and β-arrestin 2 knockout mice using the formalin, rotarod and locomotor activity tests. In vitro all compounds mimicked the effects of N/OFQ behaving as potent NOP full agonists. In vivo Ro 65-6570 demonstrated a slightly higher therapeutic index (antinociceptive vs. motor impairment effects) in knockout mice. However, all NOP agonists displayed very similar therapeutic index in normal mice despite significant differences in G protein biased agonism. In conclusion the different ability of inducing G protein vs. β-arrestin 2 recruitment of a NOP agonist cannot be applied to predict its antinociceptive vs. motor impairment properties

    Synthesis of zirconia/polyethylene glycol hybrid materials by sol-gel processing and connections between structure and release kinetic of indomethacin.

    Get PDF
    Controlled and local drug delivery systems of anti-inflammatory agents are attracting an increasing attention because of their extended therapeutic effect and reduced side effects. In this work, the sol–gel process was used to synthesize zirconia/polyethylene glycol (ZrO2/PEG) hybrid materials containing indomethacin for controlled drug delivery. Different percentages of PEG were introduced in the synthesis to modulate the release kinetic and an exhaustive chemical characterization of all samples was performed to detect the relationship between their structure and release ability. Fourier transform spectroscopy and solid-state NMR show that the Zr–OH groups of the inorganic matrix bond both the ethereal oxygen atoms of the polymer and the carboxylic groups of the drug. X-ray diffraction analysis ascertains the amorphous nature of those materials. Scanning electron microscopy detects the nanostructure and the homogeneous morphology of the synthesized materials. The bioactivity was demonstrated by the formation of a hydroxyapatite layer on the surface of the samples, after soaking in a simulated body fluid. The release kinetics study, performed by HPLC UV–Vis spectroscopy, proves that the release ability depends on PEG and the drug amount and also demonstrates the indomethacin integrity after the synthetic treatment. Controlled and local drug delivery systems of anti-inflammatory agents are attracting an increasing attention because of their extended therapeutic effect and reduced side effects. In this work, the sol-gel process was used to synthesize zirconia/polyethylene glycol (ZrO2/PEG) hybrid materials containing indomethacin for controlled drug delivery. Different percentages of PEG were introduced in the synthesis to modulate the release kinetic and an exhaustive chemical characterization of all samples was performed to detect the relationship between their structure and release ability. Fourier transform spectroscopy and solid-state NMR show that the Zr-OH groups of the inorganic matrix bond both the ethereal oxygen atoms of the polymer and the carboxylic groups of the drug. X-ray diffraction analysis ascertains the amorphous nature of those materials. Scanning electron microscopy detects the nanostructure and the homogeneous morphology of the synthesized materials. The bioactivity was demonstrated by the formation of a hydroxyapatite layer on the surface of the samples, after soaking in a simulated body fluid. The release kinetics study, performed by HPLC UV-Vis spectroscopy, proves that the release ability depends on PEG and the drug amount and also demonstrates the indomethacin integrity after the synthetic treatment

    Theobromacacao Criollo var. Beans: Biological Properties and Chemical Profile

    Get PDF
    Abstract: Theobroma cacao provides precious products such as polyphenol-rich beans that are useful for nutraceutical purposes. The geographical area may influence the chemical composition of raw cocoa beans in terms of the polyphenols and biological qualities of the products. This work aimed to investigate the biological properties and the chemical composition of two different samples of Criollo var. cocoa raw beans coming from two areas (Indonesia; Peru). Beans underwent biphasic extraction obtaining lipophilic and hydroalcoholic extracts. The extracts were tested for antiradical, antimutagenic, and antigenotoxic effects. Cell viability inhibition toward breast, gastric/esophageal colorectal adenocarcinoma, and hepatoblastoma human cell lines was evaluated. Extracts were chemically investigated through UV-Vis spectroscopy and ultra-high-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QqTOF MS/MS). Results showed that the Indonesian bean hydroalcoholic extracts were able to scavenge 20 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) cation radical better than the Peruvian hydroalcoholic extracts (ECs50: 72.63 vs. 322.20 µg/mL). Extracts showed antimutagenic and antigenotoxic activity. The viability inhibitory effect on breast and hepatic cancer cells was reached only for the Indonesian hydroalcoholic extracts at hundreds of µg/mL. Phenylpropenoyl-Lamino acids, hydroxycinnamoyl aminoacids conjugates, and procyanidin compounds were found mainly in the hydroalcoholic extracts, whereas fatty acids and lyso-phospholipids were found mainly in lipophilic fractions. Fatty acid and (epi)catechins appeared to be affected by different environmental conditions of the geographical areas

    Reversible hydrogen sorption in the composite made of magnesium borohydride and silica aerogel

    Get PDF
    Magnesium borohydride Mg(BH4)2 is a promising hydrogen storage material as it releases high hydrogen storage capacity at mild desorption temperatures, but it is still limited by slow hydrogen release kinetics and by the harsh conditions required to re-hydrogenate this compound. In this work, composites made of commercial Mg(BH4)2 and synthesized silica aerogel microparticles were prepared by thermal treatment in hydrogen under 120 bar and 200ºC. As a result, the sorption properties of the hydride are improved: calorimetric measurements show that decomposition temperature is reduced by 60ºC, and the typical 3-step decomposition mechanism of Mg(BH4)2 changes to a single-step mechanism in range of 220-400°C. The kinetics of the first dehydrogenation at 300ºC was two times faster in Mg(BH4)2-SiO2 composites than in the case of bulk γ-Mg(BH4)2. Additionally, the re-hydrogenation of this material at comparatively moderate conditions of 390ºC and 110 bar is presented for the first time, achieving cyclability with a reversible release of hydrogen up to 6wt%. Different amounts of hydrogen were exchanged depending on the temperature of desorption (300ºC or 400ºC) and the presence or absence of silica aerogel. This result indicates that silica aerogel chemically interacts with Mg(BH4)2, acting as an additive, which can result in different hydrogenation-dehydrogenation routes in which different amounts and types of intermediates are formed, influencing the kinetics and the cyclability.2018-07-27Spanish Ministry of Economy and Competitiveness project ENE2014-53459-

    Solid State Synthesis of CaMnO3 from CaCO3-MnCO3 Mixtures by Mechanical Energy

    Get PDF
    Abstract A solid state synthesis of calcium manganite (CaMnO3) is described where equimolecular mixtures CaCO3:MnCO3 have been subjected to mechanical stress (high energy milling) so yielding CaCO3-MnCO3 solid solutions of nanometric particle size. TG measurements have shown that a link exists between milling time, the extent of non-stoichiometry and the milling-induced decomposition of MnCO3 to Mn3O4. A short (2 h) annealing at 850 °C performed on a sample mixture milled for 25 h leads to non-stoichiometric CaMnO3−x. No sure conclusion could be drawn for the stoichiometry of CaMnO3 obtained, under the same annealing conditions, from a mixture milled for longer time (150 h). No synthesis of CaMnO3 could be effected by long (48 h) annealing at 1200 °C of mixtures that had not been subjected to mechanical stress

    Low-Dose Oral Ethinylestradiol With Concomitant Low-Dose Acetylsalicylic Acid for Advanced Castrate-Resistant Prostate Cancer

    Get PDF
    BACKGROUND: The aim of the present study was to evaluate the activity and tolerability of low-dose oral ethinylestradiol (EE) and luteinizing hormone-releasing hormone analogue with concomitant low-dose acetylsalicylic acid (ASA) as a thromboprophylactic agent for advanced castrate-resistant prostate cancer (CRPC). PATIENTS AND METHODS: The patients received an EE dose of 150 \u3bcg daily (50 \u3bcg 3 times daily) and an ASA dose of 100 mg once daily. The primary endpoint was the prostate-specific antigen response. RESULTS: A total of 32 patients were enrolled. A PSA response was observed in 19 patients (59.3%; 95% confidence interval [CI], 41%-76%). The median progression-free survival was 9.4 months (95% CI, 6.5-14.1 months). The treatment was generally well tolerated and no grade 3-4 toxicity was observed. Only 1 patient interrupted EE because of a cardiac event and 1 patient experienced grade 2 nausea and vomiting. No major bleeding occurred. CONCLUSION: Low-dose EE with concomitant low-dose ASA is safe, showing potential activity in patients with advanced CRPC, and should be investigated furthe

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI
    corecore