398 research outputs found

    A Class of Pseudo-Differential Operators Associated with Bessel Operators

    Get PDF
    AbstractA class of pseudo-differential operators (p.d.o.), generalizing Bessel differential operator d2/dx2 + (1 − 4ÎŒ2)/(4x2), is defined. Symbol classes Hm and Hm0 are introduced. It is shown that p.d.o.â€Čs associated with symbols belonging to these classes are continuous linear mappings of the Zemanian space HÎŒ into itself. An integral representation of p.d.o.â€Čs is obtained. Using Haimoâ€Čs theory of the Hankel convolution it is shown that p.d.o.â€Čs satisfy a certain L1 - norm inequality

    Mode of interaction of calcium oxalate crystal with human phosphate cytidylyltransferase 1: a novel inhibitor purified from human renal stone matrix

    Get PDF
    Nephrolithiasis is a common clinical disorder, and calcium oxalate (CaOx) is the principal crystalline component in approximately 75% of all renal stones. It is widely believed that proteins act as inhibitors of crystal growth and aggregation. Acidic amino acids present in these proteins play a significant role in the inhibition process. In this study, interaction of cal-cium oxalate with human phosphate cytidylyltrans-ferase 1(CCT), a novel calcium oxalate crystal growth inhibitor purified from human renal stone matrix has been elucidated in silico and involvement of acidic amino acids in the same. As only sequence of CCT is available, henceforth its 3-D structure was modeled via Homology modeling using Prime module of Schrodinger package. Molecular dynamic simulation of modeled protein with solvation was done by mac-romodel (Schrodinger). The quality of modeled pro-tein was validated by JCSG protein structure valida-tion (PROCHECK & ERRAT) server. To analyze the interaction of modeled protein CCT with calcium oxalate along with role played by acidic amino acids, ‘Docking simulation’ was done using MOE–Dock. Interaction between calcium oxalate and CCT was also studied by substituting acidic amino acid in the active sites of the protein with neutral and positively charged amino acids. The in silico analysis showed the bond formation between the acidic amino acids and calcium atom, which was further substantiated when substitution of these acidic amino acids with alanine, glycine, lysine, arginine and histidine com-pletely diminished the interaction with calcium ox-alate

    Potential and cost of carbon sequestration in Indian agriculture: Estimates from long-term field experiments

    Get PDF
    Carbon sequestration in tropical soils has potential for mitigating global warming and increasing agricultural productivity. We analyzed 26 long-term experiments (LTEs) in different agro-climatic zones (ACZs) of India to assess the potential and cost of C sequestration. Data on initial and final soil organic C (SOC) concentration in the recommended N, P and K (NPK); recommended N, P and K plus farmyard manure (NPK + FYM) and unfertilized (control) treatments were used to calculate carbon sequestration potential (CSP) i.e., capacity to sequester atmospheric carbon dioxide (CO2) by increasing SOC stock, under different nutrient management scenarios. In most of the LTEs wheat equivalent yields were higher in the NPK + FYM treatment than the NPK treatment. However, partial factor productivity (PFP) was more with the NPK treatment. Average SOC concentration of the control treatment was 0.54%, which increased to 0.65% in the NPK treatment and 0.82% in the NPK + FYM treatment. Compared to the control treatment the NPK + FYM treatment sequestered 0.33 Mg C ha−1 yr−1 whereas the NPK treatment sequestered 0.16 Mg C ha−1 yr−1. The CSP in different nutrient management scenarios ranged from 2.1 to 4.8 Mg C ha−1 during the study period (average 16.9 yr) of the LTEs. In 17 out of 26 LTEs, the NPK + FYM treatment had higher SOC and also higher net return than that of the NPK treatment. In the remaining 9 LTEs SOC sequestration in the NPK + FYM treatment was accomplished with decreased net return suggesting that these are economically not attractive and farmers have to incur into additional cost to achieve C sequestration. The feasibility of SOC sequestration in terms of availability of FYM and other organic sources has been discussed in the paper

    Commissioning and quality assurance of HalcyonTM 2.0 linear accelerator

    Get PDF
    BACKGROUND: Varian Medical Systems has introduced a new medical linear accelerator called HalcyonTM 2.0, which is based on the ring delivery system (RDS). It is a true IGRT machine having 6MV FFF photon energy. In addition to the planar and MV-CBCT imaging techniques it also has an option of ultra-fast kV-iCBCT which enhances the image reconstruction and improves the visualization of soft tissue. The field portals are shaped by a unique dual layer MLC with special stacked and staggered design which enables high modulation with low radiation leakage. Recently, we have commissioned our first Halcyon 2.0 machine. The aim of this work was to systematically investigate various parameters of a newly installed HalcyonTM 2.0 linear accelerator. MATERIALS AND METHODS: Detailed measurements were conducted as per various guidelines. Also, the measurements were performed to fulfil the national regulatory requirements. Commissioning data of Halcyon 6 MV-FFF beam was performed in a water tank. For absolute measurements, a 0.6-cc waterproof Farmer chamber and electrometer were used. All relative measurements (PDDs, in-line, cross-line and angular profiles) were performed with 0.0125 cc point chamber. RESULTS: All the tests were within the acceptable limit. Measured data were compared with factory data as well as the existing medical linear accelerator of the same category. The obtained results were quite satisfactory. CONCLUSIONS: This study summarizes the commissioning experience with Halcyon linear accelerator. Evaluation of mechanical, radiation safety and dosimetric parameters were performed. The obtained parameters were well below the specified tolerance limits

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    The burden of unintentional drowning: Global, regional and national estimates of mortality from the Global Burden of Disease 2017 Study

    Get PDF
    __Background:__ Drowning is a leading cause of injury-related mortality globally. Unintentional drowning (International Classification of Diseases (ICD) 10 codes W65-74 and ICD9 E910) is one of the 30 mutually exclusive and collectively exhaustive causes of injury-related mortality in the Global Burden of Disease (GBD) study. This study's objective is to describe unintentional drowning using GBD estimates from 1990 to 2017. __Methods:__ Unintentional drowning from GBD 2017 was estimated for cause-specific mortality and years of life lost (YLLs), age, sex, country, region, Socio-demographic Index (SDI) quintile, and trends from 1990 to 2017. GBD 2017 used standard GBD methods for estimating mortality from drowning. __Results:__ Globally, unintentional drowning mortality decreased by 44.5% between 1990 and 2017, from 531 956 (uncertainty interval (UI): 484 107 to 572 854) to 295 210 (284 493 to 306 187) deaths. Global age-standardised mortality rates decreased 57.4%, from 9.3 (8.5 to 10.0) in 1990 to 4.0 (3.8 to 4.1) per 100 000 per annum in 2017. Unintentional drowning-associated mortality was generally higher in children, males and in low-SDI to middle-SDI countries. China, India, Pakistan and Bangladesh accounted for 51.2% of all drowning deaths in 2017. Oceania was the region with the highest rate of age-standardised YLLs in 2017, with 45 434 (40 850 to 50 539) YLLs per 100 000 across both sexes. __Conclusions:__ There has been a decline in global drowning rates. This study shows that the decline was not consistent across countries. The results reinforce the need for continued and improved policy, prevention and research efforts, with a focus on low-and middle-income countries

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe

    Energy dependence of ϕ meson production at forward rapidity in pp collisions at the LHC

    Get PDF
    The production of ϕ\phi mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region 2.5<y<42.5< y < 4. Measurements of the differential cross section d2σ/dydpT\mathrm{d}^2\sigma /\mathrm{d}y \mathrm{d}p_{\mathrm {T}} are presented as a function of the transverse momentum (pTp_{\mathrm {T}}) at the center-of-mass energies s=5.02\sqrt{s}=5.02, 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at s=5.02\sqrt{s}=5.02 and 13 TeV are also studied in several rapidity intervals as a function of pTp_{\mathrm {T}}, and as a function of rapidity in three pTp_{\mathrm {T}} intervals. A hardening of the pTp_{\mathrm {T}}-differential cross section with the collision energy is observed, while, for a given energy, pTp_{\mathrm {T}} spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing pTp_{\mathrm {T}}. The new results, complementing the published measurements at s=2.76\sqrt{s}=2.76 and 7 TeV, allow one to establish the energy dependence of ϕ\phi meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with pTp_{\mathrm {T}} and rapidity at all the energies.publishedVersio

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio
    • 

    corecore