581 research outputs found

    Charge dependent azimuthal correlations in Pb--Pb collisions at sNN=2.76\sqrt{s_{NN}} = 2.76 TeV

    Full text link
    Separation of charges along the extreme magnetic field created in non-central relativistic heavy--ion collisions is predicted to be a signature of local parity violation in strong interactions. We report on results for charge dependent two particle azimuthal correlations with respect to the reaction plane for Pb--Pb collisions at sNN=2.76\sqrt{s_{NN}} = 2.76 TeV recorded in 2010 with ALICE at the LHC. The results are compared with measurements at RHIC energies and against currently available model predictions for LHC. Systematic studies of possible background effects including comparison with conventional (parity-even) correlations simulated with Monte Carlo event generators of heavy--ion collisions are also presented.Comment: Published in the proceedings of "Quark Matter 2011", Annecy-Franc

    Measurement of charm production at central rapidity in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV

    Get PDF
    The pTp_{\rm T}-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0^0, D+^+, and D+^{*+} in the rapidity range y<0.5|y|<0.5, and for transverse momentum 1<pT<121< p_{\rm T} <12 GeV/cc, were measured in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0^0 \rightarrow Kπ\pi, D+^+ \rightarrow Kππ\pi\pi, D+^{*+} \rightarrow D0π^0\pi, and their charge conjugates, and was performed on a Lint=1.1L_{\rm int} = 1.1 nb1^{-1} event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at s=2.76\sqrt{s} = 2.76 TeV and at 7 TeV was evaluated by extrapolating to the full phase space the pTp_{\rm T}-differential production cross sections at s=2.76\sqrt{s} = 2.76 TeV and our previous measurements at s=7\sqrt{s} = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/307

    Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The yield of charged particles associated with high-pTp_{\rm T} trigger particles (8<pT<158 < p_{\rm T} < 15 GeV/cc) is measured with the ALICE detector in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV relative to proton-proton collisions at the same energy. The conditional per-trigger yields are extracted from the narrow jet-like correlation peaks in azimuthal di-hadron correlations. In the 5% most central collisions, we observe that the yield of associated charged particles with transverse momenta pT>3p_{\rm T}> 3 GeV/cc on the away-side drops to about 60% of that observed in pp collisions, while on the near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/350

    Centrality Dependence Of The Pseudorapidity Density Distribution For Charged Particles In Pb-pb Collisions At √snn=2.76tev

    Get PDF
    7264/Mai61062

    Investigating strangeness enhancement with multiplicity in pp collisions using angular correlations

    Get PDF
    A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson KS0 and the double-strange baryon Ξ± is measured, in each event, in the azimuthal direction of the highest-pT particle (“trigger” particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at s = 5.02 TeV and s = 13 TeV using the ALICE detector at the LHC. The per-trigger yields of KS0 and Ξ± are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading Ξ±/KS0 yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of Ξ± with respect to KS0 is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The KS0 and Ξ± per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely Pythia8.2 with the Monash tune, Pythia8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of KS0 and Ξ±.publishedVersio

    Multiplicity dependence of charged-particle intra-jet properties in pp collisions at √s = 13 TeV

    Get PDF
    The first measurement of the multiplicity dependence of intra-jet properties of leading charged-particle jets in proton–proton (pp) collisions is reported. Themean chargedparticle multiplicity and jet fragmentation distributions are measured in minimum-bias and high-multiplicity pp collisions at center-of-mass energy √s = 13 TeV using the ALICE detector. Jets are reconstructed from charged particles produced in the midrapidity region (|η| < 0.9) using the sequential recombination anti-kT algorithm with jet resolution parameters R = 0.2, 0.3, and 0.4 for the transverse momentum (pT) interval 5–110 GeV/c. The highmultiplicity events are selected by the forward V0 scintillator detectors. The mean charged-particle multiplicity inside the leading jet cone rises monotonically with increasing jet pT in qualitative agreement with previous measurements at lower energies. The distributions of jet fragmentation function variables zch and ξ ch are measured for different jet-pT intervals. Jet-pT independent fragmentation of leading jets is observed for wider jets except at high- and low-zch values. The observed “hump-backed plateau” structure in the ξ ch distribution indicates suppression of low-pT particles. In high-multiplicity events, an enhancement of the fragmentation probability of low-zch particles accompanied by a suppression of high-zch particles is observed compared to minimum-bias events. This behavior becomes more prominent for low-pT jets with larger jet radius. The results are compared with predictions of QCD-inspired event generators, PYTHIA8 with Monash 2013 tune and EPOS LHC. It is found that PYTHIA8 qualitatively reproduces the jet modification in high-multiplicity events except at high jet pT. These measurements provide important constraints to models of jet fragmentation.publishedVersio

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    Neutron emission from electromagnetic dissociation of Pb nuclei at √ s NN = 2.76 TeV measured with the ALICE ZDC

    Get PDF
    The ALICE Zero Degree Calorimeter system (ZDC) is composed of two identical sets of calorimeters, placed at opposite sides with respect to the interaction point, 114 meters away from it, complemented by two small forward electromagnetic calorimeters (ZEM). Each set of detectors consists of a neutron (ZN) and a proton (ZP) ZDC. They are placed at zero degrees with respect to the LHC axis and allow to detect particles emitted close to beam direction, in particular neutrons and protons emerging from hadronic heavy-ion collisions (spectator nucleons) and those emitted from electromagnetic processes. For neutrons emitted by these two processes, the ZN calorimeters have nearly 100% acceptance. During the √ sNN = 2.76 TeV Pb-Pb data-taking, the ALICE Collaboration studied forward neutron emission with a dedicated trigger, requiring a minimum energy deposition in at least one of the two ZN. By exploiting also the information of the two ZEM calorimeters it has been possible to separate the contributions of electromagnetic and hadronic processes and to study single neutron vs. multiple neutron emission. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √ s NN = 2.76 TeV, with neutron emission, are σ single EMD = 187:4 ± 0.2 (stat.)-11.2 +13.2 (syst.) b and σmutual EMD = 5.7 ± 0.1 (stat.) ±0.4 (syst.) b, respectively [1]. This is the first measurement of electromagnetic dissociation of 208Pb nuclei at the LHC energies, allowing a test of electromagnetic dissociation theory in a new energy regime. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model'701st International Conference on New Frontiers in Physics, ICFP 20122012-06-10Kolymbari, Crete; Greecesem informaçã
    corecore