99 research outputs found

    Impact of genetically modified crops on rhizosphere microorganisms and processes:A review focusing on Bt cotton

    Get PDF
    In recent years, the cultivation of genetically modified (GM) crops has become a topic of great interest, due in part to the considerable public controversy, which exists concerning their potential benefits or adverse effects. Since the development of the first GM crop about 25 years ago, a diverse range of new cultivars have been released into the environment which were developed by employing advanced molecular techniques to introduce new beneficial genes from a wide variety of sources. While GM crops have great potential for enhancing agricultural production, their potential impacts on soil biota are only partially understood and information on their long-term impact on soil biota is scant. Several recent studies have indicated that GM crops may cause changes in both the invertebrate and microorganism soil biota associated with these crops, with some laboratory-based experiments even revealing transfer of genes from GM plants to native soil bacteria. However, processes such as gene transfer and stable inheritance to subsequent generations remain unproven in natural soil systems. In addition, although significant research efforts have recently been directed towards understanding the effects of GM crops on soil biota, the wide variation in the scientific observations has often hindered an accurate understanding of the issues. Thus, this review collated and synthesized all available information on the microbiological and biochemical effects of GM crops on soil biota with a special focus on GM Bt-cotton. The review also addressed the key issues associated with the use of GM crops including herbicide resistance, transgene flow and explored the plausibility of horizontal gene transfer in soil

    Quantum walk on distinguishable non-interacting many-particles and indistinguishable two-particle

    Full text link
    We present an investigation of many-particle quantum walks in systems of non-interacting distinguishable particles. Along with a redistribution of the many-particle density profile we show that the collective evolution of the many-particle system resembles the single-particle quantum walk evolution when the number of steps is greater than the number of particles in the system. For non-uniform initial states we show that the quantum walks can be effectively used to separate the basis states of the particle in position space and grouping like state together. We also discuss a two-particle quantum walk on a two- dimensional lattice and demonstrate an evolution leading to the localization of both particles at the center of the lattice. Finally we discuss the outcome of a quantum walk of two indistinguishable particles interacting at some point during the evolution.Comment: 8 pages, 7 figures, To appear in special issue: "quantum walks" to be published in Quantum Information Processin

    Cerebellar potentiation and learning a whisker-based object localization task with a time response window

    Get PDF
    Whisker-based object localization requires activation and plasticity of somatosensory and motor cortex. These parts of the cerebral cortex receive strong projections from the cerebellum via the thalamus, but it is unclear whether and to what extent cerebellar processing may contribute to such a sensorimotor task. Here, we subjected knock-out mice, which suffer from impaired intrinsic plasticity in their Purkinje cells and long-term potentiation at their parallel fiber-to-Purkinje cell synapses (L7-PP2B), to an object localization task with a time response window (RW). Water-deprived animals had to learn to localize an object with their whiskers, and based upon this location they were trained to lick within a particular period ("go" trial) or refrain from licking ("no-go" trial). L7-PP2B mice were not ataxic and showed proper basic motor performance during whisking and licking, but were severely impaired in learning this task compared with wild-type littermates. Significantly fewer L7-PP2B mice were able to learn the task at long RWs. Those L7-PP2B mice that eventually learned the task made unstable progress, were significantly slower in learning, and showed deficiencies in temporal tuning. These differences became greater as theRWbecame narrower. Trained wild-type mice, but not L7-PP2B mice, showed a net increase in simple spikes and complex spikes of their Purkinje cells during the task. We conclude that cerebellar processing, and potentiation in particular, can contribute to learning a whisker-based object localization task when timing is relevant. This study points toward a relevant role of cerebellum- cerebrum interaction in a sophisticated cognitive task requiring strict temporal processing

    Quasiperiodic rhythms of the inferior olive

    Get PDF
    Inferior olivary activity causes both short-term and long-term changes in cerebellar output underlying motor performance and motor learning. Many of its neurons engage in coherent subthreshold oscillations and are extensively coupled via gap junctions. Studies in reduced preparations suggest that these properties promote rhythmic, synchronized output. However, the interaction of these properties with torrential synaptic inputs in awake behaving animals is not well understood. Here we combine electrophysiological recordings in awake mice with a realistic tissue-scale computational model of the inferior olive to study the relative impact of intrinsic and extrinsic mechanisms governing its activity. Our data and model suggest that if subthreshold oscillations are present in the awake state, the period of these oscillations will be transient and variable. Accordingly, by using different temporal patterns of sensory stimulation, we found that complex spike rhythmicity was readily evoked but limited to short intervals of no more than a few hundred milliseconds and that the periodicity of this rhythmic activity was not fixed but dynamically related to the synaptic input to the inferior olive as well as to motor output. In contrast, in the long-term, the average olivary spiking activity was not affected by the strength and duration of the sensory stimulation, while the level of gap junctional coupling determined the stiffness of the rhythmic activity i

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    New Parton Distribution Functions for the Photon

    Full text link
    We present new improved parton distributions for the photon. We fit {\bf all} available data on the photon structure function, F2Îł(x,Q2)F^{\gamma}_{2}(x,Q^2), with Q2≄3Q^2\ge 3 GeV2^2, in order to determine the quark distributions. We also pay particular attention to the gluon distribution in the photon, gÎł(x,Q2)g^{\gamma}(x,Q^2), which has been poorly constrained in earlier analyses which only include structure function data. We use large pTp_T jet production in γγ\gamma \gamma collisions from TRISTAN to constrain gÎłg^\gamma . We also see what information can be gleaned from Îłp\gamma p collisions at HERA on gÎłg^{\gamma} and on the quark distributions at large xx, where there are no structure function data. We review future prospects of elucidating the parton distributions of the photon.Comment: 33 pages, 8 figures, uses eps

    Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Get PDF
    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malarg\"ue and averaged monthly models, the utility of the GDAS data is shown

    Information and digital literacies; a review of concepts

    Get PDF
    A detailed literature reviewing, analysing the multiple and confusing concepts around the ideas of information literacy and digital literacy at the start of the millennium. The article was well-received, and is my most highly-cited work, with over 1100 citations

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall
    • 

    corecore