142 research outputs found
Book Reviews
With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses 6 years of IceCube data focusing on muon neutrino ‘track’ events from the Northern Hemisphere, while the second analysis uses 2 years of ‘cascade’ events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: we obtain the strongest constraint to date, excluding lifetimes shorter than s at 90% CL for dark matter masses above 10 TeV
Enabling real-time multi-messenger astrophysics discoveries with deep learning
Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos. In this Expert Recommendation, we review the key challenges of real-time observations of gravitational wave sources and their electromagnetic and astroparticle counterparts, and make a number of recommendations to maximize their potential for scientific discovery. These recommendations refer to the design of scalable and computationally efficient machine learning algorithms; the cyber-infrastructure to numerically simulate astrophysical sources, and to process and interpret multi-messenger astrophysics data; the management of gravitational wave detections to trigger real-time alerts for electromagnetic and astroparticle follow-ups; a vision to harness future developments of machine learning and cyber-infrastructure resources to cope with the big-data requirements; and the need to build a community of experts to realize the goals of multi-messenger astrophysics
Comparative Analysis of mRNA Targets for Human PUF-Family Proteins Suggests Extensive Interaction with the miRNA Regulatory System
Genome-wide identification of mRNAs regulated by RNA-binding proteins is crucial to uncover post-transcriptional gene regulatory systems. The conserved PUF family RNA-binding proteins repress gene expression post-transcriptionally by binding to sequence elements in 3′-UTRs of mRNAs. Despite their well-studied implications for development and neurogenesis in metazoa, the mammalian PUF family members are only poorly characterized and mRNA targets are largely unknown. We have systematically identified the mRNAs associated with the two human PUF proteins, PUM1 and PUM2, by the recovery of endogenously formed ribonucleoprotein complexes and the analysis of associated RNAs with DNA microarrays. A largely overlapping set comprised of hundreds of mRNAs were reproducibly associated with the paralogous PUM proteins, many of them encoding functionally related proteins. A characteristic PUF-binding motif was highly enriched among PUM bound messages and validated with RNA pull-down experiments. Moreover, PUF motifs as well as surrounding sequences exhibit higher conservation in PUM bound messages as opposed to transcripts that were not found to be associated, suggesting that PUM function may be modulated by other factors that bind conserved elements. Strikingly, we found that PUF motifs are enriched around predicted miRNA binding sites and that high-confidence miRNA binding sites are significantly enriched in the 3′-UTRs of experimentally determined PUM1 and PUM2 targets, strongly suggesting an interaction of human PUM proteins with the miRNA regulatory system. Our work suggests extensive connections between the RBP and miRNA post-transcriptional regulatory systems and provides a framework for deciphering the molecular mechanism by which PUF proteins regulate their target mRNAs
Multimessenger Gamma-Ray and Neutrino Coincidence Alerts using HAWC and IceCube sub-threshold Data
The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through
the Astrophysical Multimessenger Observatory Network (AMON) framework, have
developed a multimessenger joint search for extragalactic astrophysical
sources. This analysis looks for sources that emit both cosmic neutrinos and
gamma rays that are produced in photo-hadronic or hadronic interactions. The
AMON system is running continuously, receiving sub-threshold data (i.e. data
that is not suited on its own to do astrophysical searches) from HAWC and
IceCube, and combining them in real-time. We present here the analysis
algorithm, as well as results from archival data collected between June 2015
and August 2018, with a total live-time of 3.0 years. During this period we
found two coincident events that have a false alarm rate (FAR) of
coincidence per year, consistent with the background expectations. The
real-time implementation of the analysis in the AMON system began on November
20th, 2019, and issues alerts to the community through the Gamma-ray
Coordinates Network with a FAR threshold of coincidences per year.Comment: 14 pages, 5 figures, 3 table
All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data
We report constraints on nonstandard neutrino interactions (NSI) from the observation of atmospheric neutrinos with IceCube, limiting all individual coupling strengths from a single dataset. Furthermore, IceCube is the first experiment to constrain flavor-violating and nonuniversal couplings simultaneously. Hypothetical NSI are generically expected to arise due to the exchange of a new heavy mediator particle. Neutrinos propagating in matter scatter off fermions in the forward direction with negligible momentum transfer. Hence the study of the matter effect on neutrinos propagating in the Earth is sensitive to NSI independently of the energy scale of new physics. We present constraints on NSI obtained with an all-flavor event sample of atmospheric neutrinos based on three years of IceCube DeepCore data. The analysis uses neutrinos arriving from all directions, with reconstructed energies between 5.6 GeV and 100 GeV. We report constraints on the individual NSI coupling strengths considered singly, allowing for complex phases in the case of flavor-violating couplings. This demonstrates that IceCube is sensitive to the full NSI flavor structure at a level competitive with limits from the global analysis of all other experiments. In addition, we investigate a generalized matter potential, whose overall scale and flavor structure are also constrained
The Physics of the B Factories
This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C
Searches for Neutrinos from LHAASO ultra-high-energy {\gamma}-ray sources using the IceCube Neutrino Observatory
Galactic PeVatrons are Galactic sources theorized to accelerate cosmic rays
up to PeV in energy. The accelerated cosmic rays are expected to interact
hadronically with nearby ambient gas or the interstellar medium, resulting in
{\gamma}-rays and neutrinos. Recently, the Large High Altitude Air Shower
Observatory (LHAASO) identified 12 {\gamma}-ray sources with emissions above
100 TeV, making them candidates for PeV cosmic-ray accelerators (PeVatrons).
While at these high energies the Klein-Nishina effect suppresses exponentially
leptonic emission from Galactic sources, evidence for neutrino emission would
unequivocally confirm hadronic acceleration. Here, we present the results of a
search for neutrinos from these {\gamma}-ray sources and stacking searches
testing for excess neutrino emission from all 12 sources as well as their
subcatalogs of supernova remnants and pulsar wind nebulae with 11 years of
track events from the IceCube Neutrino Observatory. No significant emissions
were found. Based on the resulting limits, we place constraints on the fraction
of {\gamma}-ray flux originating from the hadronic processes in the Crab Nebula
and LHAASOJ2226+6057
Search for Quantum Gravity Using Astrophysical Neutrino Flavour with IceCube
Along their long propagation from production to detection, neutrino states
undergo quantum interference which converts their types, or flavours.
High-energy astrophysical neutrinos, first observed by the IceCube Neutrino
Observatory, are known to propagate unperturbed over a billion light years in
vacuum. These neutrinos act as the largest quantum interferometer and are
sensitive to the smallest effects in vacuum due to new physics. Quantum gravity
(QG) aims to describe gravity in a quantum mechanical framework, unifying
matter, forces and space-time. QG effects are expected to appear at the
ultra-high-energy scale known as the Planck energy, ~giga-electronvolts (GeV). Such a high-energy universe would have
existed only right after the Big Bang and it is inaccessible by human
technologies. On the other hand, it is speculated that the effects of QG may
exist in our low-energy vacuum, but are suppressed by the Planck energy as
(~GeV), (~GeV), or its higher powers. The coupling of particles to these
effects is too small to measure in kinematic observables, but the phase shift
of neutrino waves could cause observable flavour conversions. Here, we report
the first result of neutrino interferometry~\cite{Aartsen:2017ibm} using
astrophysical neutrino flavours to search for new space-time structure. We did
not find any evidence of anomalous flavour conversion in IceCube astrophysical
neutrino flavour data. We place the most stringent limits of any known
technologies, down to ~GeV, on the dimension-six operators
that parameterize the space-time defects for preferred astrophysical production
scenarios. For the first time, we unambiguously reach the signal region of
quantum-gravity-motivated physics.Comment: The main text is 7 pages with 3 figures and 1 table. The Appendix
includes 5 pages with 3 figure
- …