126 research outputs found

    The under-ice microbiome, a five-year study at Lake Tovel

    Get PDF
    Little is known about changes in microbial abundance and community composition during persistent ice cover of lakes. Here, the under-ice 16S rRNA diversity was assessed for different pelagic layers and compared between years (2015, 2017, 2018, 2019, 2020) at Lake Tovel (1177 m above sea level; Italy). Functional profiling of amplicon sequences variants (ASVs) was also done with Piphillin. Environmental parameters (chemistry, temperature, light climate, oxygen concentration) were linked to the observed diversity patterns. Despite relatively uniform temperature and chemistry profiles, the pelagic and hypolimnetic microbiome of different years were different as assessed by a Principal Coordinates Analysis. The under-ice light climate was a driving factor of the observed differences and related to different precipitations patterns. These results underline how a changing climate also influences life under ice

    CO2 evolution in surface waters of Lake Tovel

    Get PDF
    Lake Tovel, a mountain lake (1177 m a.s.l.), is regularly samples during the ice-free season from 1995 onwards. Based on chemical data and the PhreeQC software, the CO2 content in the surface is calculated and the CO2 flux to the atmosphere is assessed. Lake Tovel shows considerable variability, coinciding with changing dissolved oxygen concentrations in the hypolimnion. Possible relationships will be discussed

    Sexual species are separated by larger genetic gaps than asexual species in rotifers.

    No full text
    Why organisms diversify into discrete species instead of showing a continuum of genotypic and phenotypic forms is an important yet rarely studied question in speciation biology. Does species discreteness come from adaptation to fill discrete niches or from interspecific gaps generated by reproductive isolation? We investigate the importance of reproductive isolation by comparing genetic discreteness, in terms of intra- and interspecific variation, between facultatively sexual monogonont rotifers and obligately asexual bdelloid rotifers. We calculated the age (phylogenetic distance) and average pairwise genetic distance (raw distance) within and among evolutionarily significant units of diversity in six bdelloid clades and seven monogonont clades sampled for 4211 individuals in total. We find that monogonont species are more discrete than bdelloid species with respect to divergence between species but exhibit similar levels of intraspecific variation (species cohesiveness). This pattern arises because bdelloids have diversified into discrete genetic clusters at a faster net rate than monogononts. Although sampling biases or differences in ecology that are independent of sexuality might also affect these patterns, the results are consistent with the hypothesis that bdelloids diversified at a faster rate into less discrete species because their diversification does not depend on the evolution of reproductive isolation

    Multi annual comparisons of summer and under ice phytoplankton communities of a mountain lake

    Get PDF
    Little is known on the dynamics of under-ice phytoplankton communities. We investigated phytoplankton communities in the upper (0-20 m) and lower (30-35 m) layer of oligotrophic Lake Tovel, Brenta Dolomites (Italy) over six years during summer and under ice. Winter conditions were different from one year to another with respect to ice thickness and snow cover. Proxies for light transmission (Secchi disk transparency, light attenuation) were similar between seasons, even though the incident solar radiation was lower in winter. Algal richness and chlorophyll-a were not different between seasons while biomass was higher during summer. In four of the six years, Bacillariophyta dominated during summer and Miozoa (class Dinophyceae) under ice while in two years Bacillariophyta also dominated under ice. Generally, a shift to larger size classes from summer to under ice was observed for Bacillariophyta, Chlorophyta, and Ochrophyta (class Chrysophyceae) while Dinophyceae showed the opposite pattern. No strong links between phytoplankton community composition and abiotic factors (under-ice convective mixing, snow on ice, under-ice light) were found. We suggest that inter-species relationships and more precise indicators of under-ice light should be considered to better understand under-ice processes

    A georeferenced dataset of Italian occurrence records of the phylum Rotifera

    Get PDF
    We report a dataset of known and published occurrence records of Italian taxa from species (and subspecies) to family rank of the phylum Rotifera; we considered only Bdelloidea, Monogononta, and Seisonacea, and did not include Acanthocephala. The dataset in-cludes 15,525 records (12,015 of which with georeferenced coordinates) of 584 valid species and subspecies names and other taxa at family level, gathered from 332 published papers. The published literature spans the period from 1838 to 2022, with the lowest number of papers published during the first half of the twentieth century, followed by an increasing number of papers, from 20 to more than 60 in each decade. The Italian regions with the highest number of records and species are Emilia-Romagna, Lombardy, and Piedmont, whereas no records are known for Molise. The number of species known from each region mostly mirrors sampling efforts, measured as the number of publications per region. The dataset is available through the Open Science Framework (OSF), and all the georeferenced occurrence data have been uploaded to the Global Biodiversity Information Facility (GBIF). ial use only

    A georeferenced dataset of Italian occurrence records of the phylum Rotifera

    Get PDF
    We report a dataset of known and published occurrence records of Italian taxa from species (and subspecies) to family rank of the phylum Rotifera; we considered only Bdelloidea, Monogononta, and Seisonacea, and did not include Acanthocephala. The dataset includes 15,525 records (12,015 of which with georeferenced coordinates) of 584 valid species and subspecies names and other taxa at family level, gathered from 332 published papers. The published literature spans the period from 1838 to 2022, with the lowest number of papers published during the first half of the twentieth century, followed by an increasing number of papers, from 20 to more than 60 in each decade. The Italian regions with the highest number of records and species are Emilia-Romagna, Lombardy, and Piedmont, whereas no records are known for Molise. The number of species known from each region mostly mirrors sampling efforts, measured as the number of publications per region. The dataset is available through the Open Science Framework (OSF), and all the georeferenced occurrence data have been uploaded to the Global Biodiversity Information Facility (GBIF)

    Evidence of Weak Habitat Specialisation in Microscopic Animals

    Get PDF
    Macroecology and biogeography of microscopic organisms (any living organism smaller than 2 mm) are quickly developing into fruitful research areas. Microscopic organisms also offer the potential for testing predictions and models derived from observations on larger organisms due to the feasibility of performing lab and mesocosm experiments. However, more empirical knowledge on the similarities and differences between micro- and macro-organisms is needed to ascertain how much of the results obtained from the former can be generalised to the latter. One potential misconception, based mostly on anedoctal evidence rather than explicit tests, is that microscopic organisms may have wider ecological tolerance and a lower degree of habitat specialisation than large organisms. Here we explicitly test this hypothesis within the framework of metacommunity theory, by studying host specificify in the assemblages of bdelloid rotifers (animals about 350 µm in body length) living in different species of lichens in Sweden. Using several regression-based and ANOVA analyses and controlling for both spatial structure and the kind of substrate the lichen grow over (bark vs rock), we found evidence of significant but weak species-specific associations between bdelloids and lichens, a wide overlap in species composition between lichens, and wide ecological tolerance for most bdelloid species. This confirms that microscopic organisms such as bdelloids have a lower degree of habitat specialisation than larger organisms, although this happens in a complex scenario of ecological processes, where source-sink dynamics and geographic distances seem to have no effect on species composition at the analysed scale

    Can space-for-time-substitution surveys represent zooplankton biodiversity patterns and their relationship to environmental drivers?

    Get PDF
    Space-for-Time-Substitution surveys (SFTS) are commonly used to describe zooplankton community dynamics and to determine lake ecosystem health. SFTS surveys typically combine single point observations from many lakes to evaluate the response of zooplankton community structure and dynamics (e.g., species abundance and biomass, diversity, demographics and modeled rate processes) to spatial gradients in hypothesized environmental drivers (e.g., temperature, nutrients, predation), in lieu of tracking such responses over long time scales. However, the reliability and reproducibility of SFTS zooplankton surveys have not yet been comprehensively tested against empirically-based community dynamics from longterm monitoring efforts distributed worldwide. We use a recently compiled global data set of more than 100 lake zooplankton time series to test whether SFTS surveys can accurately capture zooplankton diversity, and the hypothesized relationship with temperature, using simulated SFTS surveys of the time series data. Specifically, we asked: (1) to what degree can SFTS surveys capture observed biodiversity dynamics; (2) how does timing and duration of sampling affect detected biodiversity patterns; (3) does biodiversity ubiquitously increase with temperature across lakes, or vary by climate zone or lake type; and (4) do results from SFTS surveys produce comparable biodiversity-temperature relationship(s) to empirical data within and among lakes? Testing biodiversity-ecosystem function (BEF) relationships, and the drivers of such relationships, requires a solid data basis. Our work provides a global perspective on the design and usefulness of (long-term) zooplankton monitoring programs and how much confidence we can place in the zooplankton biodiversity patterns observed from SFTS surveys

    Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy

    Get PDF
    Understanding patterns and processes in biological diversity is a critical task given current and rapid environmental change. Such knowledge is even more essential when the taxa under consideration are important ecological and evolutionary models. One of these cases is the monogonont rotifer cryptic species complex Brachionus plicatilis, which is by far the most extensively studied group of rotifers, is widely used in aquaculture, and is known to host a large amount of unresolved diversity. Here we collate a dataset of previously available and newly generated sequences of COI and ITS1 for 1273 isolates of the B. plicatilis complex and apply three approaches in DNA taxonomy (i.e. ABGD, PTP, and GMYC) to identify and provide support for the existence of 15 species within the complex. We used these results to explore phylogenetic signal in morphometric and ecological traits, and to understand correlation among the traits using phylogenetic comparative models. Our results support niche conservatism for some traits (e.g. body length) and phylogenetic plasticity for others (e.g. genome size)

    Data Descriptor : A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF
    Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.Peer reviewe
    corecore