977 research outputs found
Rare charm decays at LHCb
on behalf of the LHCb CollaborationInternational audienceFlavour-changing neutral current decays such as c→ul+l- are highly suppressed in the Standard Model (SM), but may be enhanced by New Physics. For D0→μ+μ-, the SM decay rate is dominated by long distance contributions but is still a few order of magnitudes below the current experimental limit. In decays such as D+→π+μ+μ-, measuring the differential branching ratio as a function of the μ+μ- invariant mass is a sensitive probe for New Physics contributions. We present the latest results of searches for rare charm decays at LHCb
Rare decays at LHCb
On behalf of the LHCb Collaboration. PoS(IHEP-LHC)012International audienceIn this presentation, rare decays of B and D mesons are discussed. Such decays are sensitive to the presence of physics beyond the Standard Model as they are mediated by loop diagrams. New physics can be probed by measuring unexpectedly high branching ratios, CP, isospin and forward backward asymmetries and other angular observables. The last results of LHCb experiment in this field are presented
Pion emission from the T2K replica target: method, results and application
The T2K long-baseline neutrino oscillation experiment in Japan needs precise
predictions of the initial neutrino flux. The highest precision can be reached
based on detailed measurements of hadron emission from the same target as used
by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The
corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at
the CERN SPS using a replica of the T2K graphite target. In this paper details
of the experiment, data taking, data analysis method and results from the 2007
pilot run are presented. Furthermore, the application of the NA61/SHINE
measurements to the predictions of the T2K initial neutrino flux is described
and discussed.Comment: updated version as published by NIM
Measurements of the branching fractions of B+→ppK+ decays
The branching fractions of the decay B+ → pp̄K+ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment. The total branching fraction, its charmless component Mpp̄ < 2.85 GeV/c2 and the branching fractions via the resonant cc̄ states η c(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are [Equation not available: see fulltext.] Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained
Study of and decays and determination of the CKM angle
We report a study of the suppressed and favored
decays, where the neutral meson is detected
through its decays to the and CP-even and
final states. The measurement is carried out using a proton-proton
collision data sample collected by the LHCb experiment, corresponding to an
integrated luminosity of 3.0~fb. We observe the first significant
signals in the CP-even final states of the meson for both the suppressed
and favored modes, as well as
in the doubly Cabibbo-suppressed final state of the decay. Evidence for the ADS suppressed decay , with , is also presented. From the observed
yields in the , and their
charge conjugate decay modes, we measure the value of the weak phase to be
. This is one of the most precise
single-measurement determinations of to date.Comment: 22 pages, 9 figures; All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm
Differential branching fraction and angular analysis of decays
The differential branching fraction of the rare decay is measured as a function of , the
square of the dimuon invariant mass. The analysis is performed using
proton-proton collision data, corresponding to an integrated luminosity of 3.0
\mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is
observed in the region below the square of the mass. Integrating
over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as
d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+
0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1},
where the uncertainties are statistical, systematic and due to the
normalisation mode, , respectively.
In the intervals where the signal is observed, angular distributions are
studied and the forward-backward asymmetries in the dimuon ()
and hadron () systems are measured for the first time. In the
range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} =
-0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} =
-0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde
Search for the rare decays and
A search for the rare decay of a or meson into the final
state is performed, using data collected by the LHCb experiment
in collisions at and TeV, corresponding to an integrated
luminosity of 3 fb. The observed number of signal candidates is
consistent with a background-only hypothesis. Branching fraction values larger
than for the decay mode are
excluded at 90% confidence level. For the decay
mode, branching fraction values larger than are excluded at
90% confidence level, this is the first branching fraction limit for this
decay.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-044.htm
A model-independent confirmation of the state
The decay is analyzed using of
collision data collected with the LHCb detector. A model-independent
description of the mass spectrum is obtained, using as input the
mass spectrum and angular distribution derived directly from data,
without requiring a theoretical description of resonance shapes or their
interference. The hypothesis that the mass spectrum can be
described in terms of reflections alone is rejected with more than
8 significance. This provides confirmation, in a model-independent way,
of the need for an additional resonant component in the mass region of the
exotic state.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-038.htm
- …
