41 research outputs found

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    IPF2alpha-I: an index of lipid peroxidation in humans.

    No full text
    Isoprostanes are prostaglandin isomers produced from arachidonic acid by a free radical-catalyzed mechanism. Urinary excretion of 8-iso-prostaglandin F2alpha, an isomer of the PGG/H synthase (cyclooxygenase or COX) enzyme product, prostaglandin F2alpha (PGF2alpha), has exhibited promise as an index of oxidant stress in vivo. We have developed a quantitative method to measure isoprostane F2alpha-I, (IPF2alpha-I) a class I isomer (8-iso-PGF2alpha is class IV), using gas chromatography/mass spectrometry. IPF2alpha-I is severalfold as abundant in human urine as 8-iso-PGF2alpha, with mean values of 737 +/- 20.6 pg/mg creatinine. Both isoprostanes are formed in a free radical-dependent manner in low density lipoprotein oxidized by copper in vitro. However, IPF2alpha-I, unlike 8-iso-PGF2alpha, is not formed in a COX-dependent manner by platelets activated by thrombin or collagen in vitro. Similarly, COX inhibition in vivo has no effect on IPF2alpha-I. Neither serum IPF2alpha-I, an index of cellular capacity to generate the isoprostane, nor urinary excretion of IPF2alpha-I, an index of actual generation in vivo, is depressed by aspirin or indomethacin. In contrast, both serum thromboxane B2 and urinary excretion of its 11-dehydro metabolite are depressed by the COX inhibitors. Although serum 8-iso-PGF2alpha formation is substantially depressed by COX inhibitors, urinary excretion of the compound is unaffected. Urinary IPF2alpha-I is elevated in cigarette smokers compared with controls (1525 +/- 180 versus 740 +/- 40 pg/mg creatinine; P &lt; 0.01) and is highly correlated with urinary 8-iso-PGF2alpha (r = 0.9; P &lt; 0.001). Urinary IPF2alpha-I is a novel index of lipid peroxidation in vivo, which can be measured with precision and sensitivity. It is an abundant F2-isoprostane formed in a free radical- but not COX-dependent manner. Although 8-iso-PGF2alpha may be formed as a minor product of COX, this pathway contributes trivially, if at all, to levels in urine. Urinary excretion of both isoprostanes is elevated in cigarette smokers

    Risk factors for diabetic foot ulcers in metreleptin naïve patients with lipodystrophy

    Full text link
    Abstract Aim Patients with lipodystrophy are at high risk for chronic complications of diabetes. Recently, we have reported 18 diabetic foot ulcer episodes in 9 subjects with lipodystrophy. This current study aims to determine risk factors associated with foot ulcer development in this rare disease population. Methods Ninety metreleptin naïve patients with diabetes registered in our national lipodystrophy database were included in this observational retrospective cohort study (9 with and 81 without foot ulcers). Results Patients with lipodystrophy developing foot ulcers had longer diabetes duration (p = 0.007), longer time since lipodystrophy diagnosis (p = 0.008), and higher HbA1c levels (p = 0.041). Insulin use was more prevalent (p = 0.003). The time from diagnosis of diabetes to first foot ulcer was shorter for patients with generalized lipodystrophy compared to partial lipodystrophy (p = 0.036). Retinopathy (p < 0.001), neuropathy (p < 0.001), peripheral artery disease (p = 0.001), and kidney failure (p = 0.003) were more commonly detected in patients with foot ulcers. Patients with foot ulcers tended to have lower leptin levels (p = 0.052). Multiple logistic regression estimated significant associations between foot ulcers and generalized lipodystrophy (OR: 40.81, 95% CI: 3.31–503.93, p = 0.004), long-term diabetes (≥ 15 years; OR: 27.07, 95% CI: 2.97–246.39, p = 0.003), and decreased eGFR (OR: 13.35, 95% CI: 1.96–90.67, p = 0.008). Conclusions Our study identified several clinical factors associated with foot ulceration among patients with lipodystrophy and diabetes. Preventive measures and effective treatment of metabolic consequences of lipodystrophy are essential to prevent the occurrence of foot ulcers in these high-risk individuals.http://deepblue.lib.umich.edu/bitstream/2027.42/174034/1/40842_2021_Article_132.pd

    Renal Nerve Stimulation-Induced Blood Pressure Changes Predict Ambulatory Blood Pressure Response After Renal Denervation.

    No full text
    Blood pressure (BP) response to renal denervation (RDN) is highly variable and its effectiveness debated. A procedural end point for RDN may improve consistency of response. The objective of the current analysis was to look for the association between renal nerve stimulation (RNS)-induced BP increase before and after RDN and changes in ambulatory BP monitoring (ABPM) after RDN. Fourteen patients with drug-resistant hypertension referred for RDN were included. RNS was performed under general anesthesia at 4 sites in the right and left renal arteries, both before and immediately after RDN. RNS-induced BP changes were monitored and correlated to changes in ambulatory BP at a follow-up of 3 to 6 months after RDN. RNS resulted in a systolic BP increase of 50±27 mm Hg before RDN and systolic BP increase of 13±16 mm Hg after RDN (P<0.001). Average systolic ABPM was 153±11 mm Hg before RDN and decreased to 137±10 mm Hg at 3- to 6-month follow-up (P=0.003). Changes in RNS-induced BP increase before versus immediately after RDN and changes in ABPM before versus 3 to 6 months after RDN were correlated, both for systolic BP (R=0.77, P=0.001) and diastolic BP (R=0.79, P=0.001). RNS-induced maximum BP increase before RDN had a correlation of R=0.61 (P=0.020) for systolic and R=0.71 (P=0.004) for diastolic ABPM changes. RNS-induced BP changes before versus after RDN were correlated with changes in 24-hour ABPM 3 to 6 months after RDN. RNS should be tested as an acute end point to assess the efficacy of RDN and predict BP response to RDN

    Persistent Increase in Blood Pressure After Renal Nerve Stimulation in Accessory Renal Arteries After Sympathetic Renal Denervation.

    No full text
    Blood pressure response to renal denervation is highly variable, and the proportion of responders is disappointing. This may be partly because of accessory renal arteries too small for denervation, causing incomplete ablation. Renal nerve stimulation before and after renal denervation is a promising approach to assess completeness of renal denervation and may predict blood pressure response to renal denervation. The objective of the current study was to assess renal nerve stimulation-induced blood pressure increase before and after renal sympathetic denervation in main and accessory renal arteries of anaesthetized patients with drug-resistant hypertension. The study included 21 patients. Nine patients had at least 1 accessory renal artery in which renal denervation was not feasible. Renal nerve stimulation was performed in the main arteries of all patients and in accessory renal arteries of 6 of 9 patients with accessory arteries, both before and after renal sympathetic denervation. Renal nerve stimulation before renal denervation elicited a substantial increase in systolic blood pressure, both in main (25.6±2.9 mm Hg; P<0.001) and accessory (24.3±7.4 mm Hg; P=0.047) renal arteries. After renal denervation, renal nerve stimulation-induced systolic blood pressure increase was blunted in the main renal arteries (Δ systolic blood pressure, 8.6±3.7 mm Hg; P=0.020), but not in the nondenervated renal accessory renal arteries (Δ systolic blood pressure, 27.1±7.6 mm Hg; P=0.917). This residual source of renal sympathetic tone may result in persistent hypertension after ablation and partly account for the large response variability
    corecore