142 research outputs found

    Video capsule endoscopy in left ventricular assist device recipients with obscure gastrointestinal bleeding

    Get PDF
    AIM: To assess whether video capsule endoscopy (VCE) affects the outcomes of left ventricular assist devices (LVADs) recipients with gastrointestinal bleeding. METHODS: This is a retrospective study of LVAD recipients with obscure gastrointestinal bleeding (OGIB) who underwent VCE at a tertiary medical center between 2005 and 2013. All patients were admitted and monitored with telemetry and all VCE and subsequent endoscopic procedures were performed as inpatients. A VCE study was considered positive only when P2 lesions were found and was regarded as negative if P1 or P0 were identified. All patients were followed until heart transplant, death, or the end of the study. RESULTS: Between 2005 and 2013, 30 patients with LVAD underwent VCE. Completion rate of VCE was 93.3% and there was no capsule retention. No interference of VCE recording or the function of LVAD was found. VCE was positive in 40% of patients (n = 12). The most common finding was active small intestinal bleeding (50%) and small intestinal angiodysplasia (33.3%). There was no difference in the rate of recurrent bleeding between patients with positive and negative VCE study (50.0% vs 55.6%, P = 1.00) during an average of 11.6 ± 9.6 mo follow up. Among patients with positive VCE, the recurrent bleeding rate did not differ whether subsequent endoscopy was performed (50% vs 50%, P = 1.00). CONCLUSION: VCE can be safely performed in LVAD recipients with a diagnostic yield of 40%. VCE does not affect recurrent bleeding in LVAD patients regardless of findings

    Analog Printed Spiking Neuromorphic Circuit

    Get PDF
    Biologically-inspired Spiking Neural Networks have emerged as a promising avenue for energy-efficient, high-performance neuromorphic computing. With the demand for highly-customized and cost-effective solutions in emerging application domains like soft robotics, wearables, or IoT-devices, Printed Electronics has emerged as an alternative to traditional silicon technologies leveraging soft materials and flexible substrates. In this paper, we propose an energy-efficient analog printed spiking neuromorphic circuit and a corresponding learning algorithm. Simulations on 13 benchmark datasets show an average of 3.86× power improvement with similar classification accuracy compared to previous works

    Effects of High-Temperature-Pressure Polymerized Resin-Infiltrated Ceramic Networks on Oral Stem Cells

    Get PDF
    International audienceObjectivesThe development of CAD—CAM techniques called for new materials suited to this technique and offering a safe and sustainable clinical implementation. The infiltration of resin in a ceramic network under high pressure and high temperature defines a new class of hybrid materials, namely polymer infiltrated ceramics network (PICN), for this purpose which requires to be evaluated biologically. We used oral stem cells (gingival and pulpal) as an in vitro experimental model.MethodsFour biomaterials were grinded, immersed in a culture medium and deposed on stem cells from dental pulp (DPSC) and gingiva (GSC): Enamic (VITA®), Experimental Hybrid Material (EHM), EHM with initiator (EHMi) and polymerized Z100™ composite material (3M®). After 7 days of incubation; viability, apoptosis, proliferation, cytoskeleton, inflammatory response and morphology were evaluated in vitro.ResultsProliferation was insignificantly delayed by all the tested materials. Significant cytotoxicity was observed in presence of resin based composites (MTT assay), however no detectable apoptosis and some dead cells were detected like in PICN materials. Cell morphology, major cytoskeleton and extracellular matrix components were not altered. An intimate contact appeared between the materials and cells.Clinical SignificanceThe three new tested biomaterials did not exhibit adverse effects on oral stem cells in our experimental conditions and may be an interesting alternative to ceramics or composite based CAD—CAM blocks

    Sodium-glucose co-transporter 2 inhibition in patients hospitalized for acute decompensated heart failure:rationale for and design of the EMPULSE trial

    Get PDF
    Aims Treatment with sodium-glucose co-transporter 2 (SGLT2) inhibitors improves outcomes in patients with chronic heart failure (HF) with reduced ejection fraction. There is limited experience with the in-hospital initiation of SGLT2 inhibitors in patients with acute HF (AHF) with or without diabetes. EMPULSE is designed to assess the clinical benefit and safety of the SGLT2 inhibitor empagliflozin compared with placebo in patients hospitalized with AHF. Methods EMPULSE is a randomized, double-blind, parallel-group, placebo-controlled multinational trial comparing the in-hospital initiation of empagliflozin (10 mg once daily) with placebo. Approximately 500 patients admitted for AHF with dyspnoea, signs of fluid overload, and elevated natriuretic peptides will be randomized 1:1 stratified to HF status (de-novo and decompensated chronic HF) to either empagliflozin or placebo at approximately 165 sites across North America, Europe and Asia. Patients will be enrolled regardless of ejection fraction and diabetes status and will be randomized during hospitalization and after stabilization (between 24 h and 5 days after admission), with treatment continued up to 90 days after initiation. The primary outcome is clinical benefit at 90 days, consisting of a composite of all-cause death, HF events, and >= 5 point change from baseline in Kansas City Cardiomyopathy Questionnaire total symptom score (KCCQ-TSS), assessed using a 'win-ratio' approach. Secondary outcomes include assessments of safety, change in KCCQ-TSS from baseline to 90 days and change in natriuretic peptides from baseline to 30 days. Conclusion The EMPULSE trial will evaluate the clinical benefit and safety of empagliflozin in patients hospitalized for AHF

    Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences

    Get PDF
    DNA double strand breaks (DSB) can be repaired either via a sequence independent joining of DNA ends or via homologous recombination. We established a detection system in Drosophila melanogaster to investigate the impact of sequence constraints on the usage of the homology based DSB repair via single strand annealing (SSA), which leads to recombination between direct repeats with concomitant loss of one repeat copy. First of all, we find the SSA frequency to be inversely proportional to the spacer length between the repeats, for spacers up to 2.4 kb in length. We further show that SSA between divergent repeats (homeologous SSA) is suppressed in cell cultures and in vivo in a sensitive manner, recognizing sequence divergences smaller than 0.5%. Finally, we demonstrate that the suppression of homeologous SSA depends on the Bloom helicase (Blm), encoded by the Drosophila gene mus309. Suppression of homeologous recombination is a novel function of Blm in ensuring genomic integrity, not described to date in mammalian systems. Unexpectedly, distinct from its function in Saccharomyces cerevisiae, the mismatch repair factor Msh2 encoded by spel1 does not suppress homeologous SSA in Drosophila

    Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences

    Get PDF
    DNA double strand breaks (DSB) can be repaired either via a sequence independent joining of DNA ends or via homologous recombination. We established a detection system in Drosophila melanogaster to investigate the impact of sequence constraints on the usage of the homology based DSB repair via single strand annealing (SSA), which leads to recombination between direct repeats with concomitant loss of one repeat copy. First of all, we find the SSA frequency to be inversely proportional to the spacer length between the repeats, for spacers up to 2.4 kb in length. We further show that SSA between divergent repeats (homeologous SSA) is suppressed in cell cultures and in vivo in a sensitive manner, recognizing sequence divergences smaller than 0.5%. Finally, we demonstrate that the suppression of homeologous SSA depends on the Bloom helicase (Blm), encoded by the Drosophila gene mus309. Suppression of homeologous recombination is a novel function of Blm in ensuring genomic integrity, not described to date in mammalian systems. Unexpectedly, distinct from its function in Saccharomyces cerevisiae, the mismatch repair factor Msh2 encoded by spel1 does not suppress homeologous SSA in Drosophila

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Competition between Replicative and Translesion Polymerases during Homologous Recombination Repair in Drosophila

    Get PDF
    In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s) that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis
    corecore