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Abstract—Biologically-inspired Spiking Neural Networks have
emerged as a promising avenue for energy-efficient, high-
performance neuromorphic computing. With the demand for
highly-customized and cost-effective solutions in emerging applica-
tion domains like soft robotics, wearables, or IoT-devices, Printed
Electronics has emerged as an alternative to traditional silicon
technologies leveraging soft materials and flexible substrates. In
this paper, we propose an energy-efficient analog printed spiking
neuromorphic circuit and a corresponding learning algorithm.
Simulations on 13 benchmark datasets show an average of 3.86×
power improvement with similar classification accuracy compared
to previous works.

I. INTRODUCTION

Next-generation electronics encompassing soft robotics,

wearables, near-sensor processing, and the Internet of Things

(IoTs) are shifting towards lightweight, flexible, and low-cost

solutions. However, conventional silicon-based technologies

fall short of meeting these requirements due to their bulky

substrates and high production costs [1]. In this context, printed

electronics (PE) has emerged as a promising solution, providing

design flexibility, cost-efficiency, and fast prototyping, espe-

cially for low-volume applications [2].

Advancements in machine learning and neuromorphic com-

puting have gained significant attention in the area of cog-

nitive computational tasks. This paradigm shift in computing

is driven by the limitation of conventional von Neumann

architectures, which underpin most digital computers, in terms

of energy efficiency, adaptability, and cognitive capabilities. In

this regard, Spiking Neural Networks (SNNs), inspired by the

information processing in biological brains, represent a trans-

formative evolution. In contrast to traditional Artificial Neural

Networks (ANNs) that rely on continuous activations [3], SNNs

communicate through discrete, event-driven spikes, mimicking

the behavior of neurons in the human brain [4, 5]. This unique

behavior not only allows for more biologically plausible model-

ing but also presents opportunities for achieving unprecedented

energy efficiency.

The decision to opt between digital and analog SNN im-

plementation is crucial in neuromorphic computing, as it is

influenced by the specific requirements of the tasks at hand.

Digital SNNs provide exceptional robustness in noisy condi-

tions and scalability for more complex networks [6, 7]. On the

contrary, analog SNNs are more competitive in area, energy

efficiency, and real-time processing, making them a promis-

ing choice for PE applications with strict power constraints.

Leveraging the benefits offered by PE and neuromorphic

computing, prior studies successfully realized the implemen-

tation of analog printed spiking neurons on organic substrates

♣Authors contributed equally to this work.

Fig. 1. Schematic of (a) gravure printing (b) inkjet printing; (c) front view
and (d) top view of a printed N-type EGT.

[8, 9]. Additionally, researchers presented adaptations to the

architectures and training algorithms for analog Printed Arti-

ficial Neural Networks (P-ANNs) [10]. Also, they introduced

training algorithms that account for variation, aging effects, and

power considerations [11, 12]. Although significant efforts have

been made to implement various printed computing paradigms,

very few studies have been reported on programmable analog

Spiking Neural Network using PE.

In this work, we propose an analog printed spiking neuron

circuit design and its associated learning algorithm for neural

network computation. To the best of our knowledge, this is the

first demonstration of a complete spiking neuromorphic com-

puting system implemented using inorganic printed electronics.

The contributions of this work are:

• We designed a novel programmable energy-efficient spik-

ing neuron using only printed N-type electrolyte-gated

transistor (EGT) technology, suitable for low-voltage and

energy-harvested edge applications.

• We proposed a differential Transformer-based machine

learning model to enable the training of this circuitry for

specific target tasks.

• We validated the simulation-based performance of the

proposed neuron on a trained SNN and evaluated its asso-

ciated learning algorithm on a set of benchmark datasets.

The rest of this paper is structured as follows: Sec. II,

provides the background of this work. Sec. III proposes the

printed analog spiking neuron design and develops a learning

algorithm to solve specific classification tasks. In Sec. IV, we

evaluate the effectiveness of the proposed models on benchmark

datasets, compare our results with the existing printed analog

P-ANNs, and discuss its application. Finally, Sec. V concludes

this paper.

II. PRELIMINARIES

A. Printed Electronics (PE)

PE is an additive manufacturing approach where printed ma-

terials are deposited layer-upon-layer to realize active devices,
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Fig. 2. Proposed flow for an on-demand printed spiking neuron design given a specification of a desired functionality realized through P-SNN training.

passive components, interconnects, and crossovers. Unlike con-

ventional silicon electronics, PE requires fewer manufacturing

steps and inexpensive fabrication processes. Various materials

can be used for targeted applications of printed electronics,

enabling flexibility and biocompatibility in next-generation

electronics. PE can be categorized into high-volume replication

(e.g., gravure printing) and customized jet printing (e.g., inkjet

printing), as shown in Fig. 1(a) and Fig. 1(b) respectively [13].

Organic inkjet-printed FETs use lithographically structured

semiconductors for source-drain channels which require higher

supply voltages (≥ 5V) [14], while inorganic FETs can operate

at sub-1V voltage range and are thus more promising for low-

power applications. Fig. 1(c) (front view) and Fig. 1(d) (top

view) show a typical N-type EGT with a top-gated geometry.

The indium oxide (In2O3) semiconductor is used as a channel

material while the gate dielectric is replaced with a solid

polymer electrolyte.

B. Printed Artificial Neural Networks (P-ANNs)

P-ANNs emulate the functions of Artificial Neural Net-

works via operations such as weighted-sums and nonlinear

activations. P-ANNs have the capability to directly operate

on analog sensory input with significantly reduced hardware

footprints compared to digital counterparts. Leveraging the

analog processing, P-ANNs use printed resistor crossbars for

weighted-sum operation, analog inverters for negative weights,

and nonlinear tanh or ReLU activation functions [10]. However,

P-ANNs lack the capacity to process temporal data and are not

energy-efficient.

C. Spiking Neural Networks (SNNs)

Spiking Neural Networks (SNNs) derive inspiration from the

brain’s efficient information processing, utilizing discrete pulses

for communication. They emulate the operational principles

of a biological neuron, combining three components; namely

dendrite, soma, and axon. For a biological neuron, the dendrite

receives the signal, the soma integrates incoming signals and

determines spike initiation based on membrane potential. After-

ward, the axon facilitates the transmission of the soma’s output.

Unlike conventional ANNs, SNNs mirror the brain’s event-

driven nature, offering energy savings and real-time processing

enhancements [15]. SNNs employ spiking neurons, transmitting

data through spike timing or frequency.

D. Low-Power and Energy-Efficient Neuromorphic Design

Although neuromorphic computing has already been proven

to be significantly power and energy-efficient compared to

conventional approaches [16], ongoing research aims to further

reduce the power consumption of these neuromorphic circuits.

For instance, [17] developed a novel device to decrease the

power required for the activation functions. The work of [18]

utilized hardware-software co-design to optimize circuit struc-

ture for data flow in the computing process. Regarding com-

putational paradigms, numerous silicon circuits have adopted

brain-inspired SNN to minimize power in analog, digital, or

mixed-signal by integrating synaptic inputs, generating action

potentials, and transmitting them along neuron axons to connect

with post-synaptic terminals.

III. PROPOSED PRINTED SPIKING NEURAL NETWORKS

(P-SNNS)

The overall design of the proposed Printed Spiking Neural

Network was initiated by designing the spiking neuron circuit,

modeling its Transformer-based surrogate machine learning

model, training the resulting spiking network, and finally map-

ping the P-SNN back to its corresponding circuit components

as shown in Fig. 2.

A. Implementation of Printed Spiking Neuron

The design of the proposed Printed Spiking Neuron circuit

comprises of three stages: synapses, charge network, and reset

and discharge network. The synapses contain the input to the

neuron, which resembles the functionality of the biological neu-

ron. The charge network and the reset and discharge network

illustrate the spike-generator circuit’s functionality.

a) Synapses: Synapses are the part of the neuron that

transmit signals from the presynaptic neuron’s axon to the

postsynaptic neuron’s dendrite. For the sake of circuit real-

ization, presynaptic neurons are represented as voltage inputs,

and each presynaptic neuron is assigned a weight through a

resistor crossbar as shown in Fig. 3. Using Nodal Analysis, the

weighted sum is expressed by

V 1
g

R0
w

+
V 1
g − V 1

in

R1
w

· · ·+ V 1
g − V N

in

RN
w

= 0, (1)

where V 1
g is the gate voltage of M1, V 1

in is the input voltage

to the neuron, R0
w works as a voltage divider, R1

w and RN
w



Fig. 3. Circuit level implementation of Printed Spiking Neuron which includes three stages: Synapses, Charge Network, and Reset and Discharge Network.

are used to resemble the weights of the connected neurons

and N is the number of the presynaptic neurons connected as

inputs. Additionally, another circuit is required for the negative

weights, as proposed in [10]. To determine V 1
g , please refer to

Sec. III-B for detailed calculation procedures.

b) Spike-generator Circuit: As shown in Fig. 3, both R1

and Cin form a network to provide Vin (the voltage across

Cin) to the amplifier with a delay directly proportional to

both R1Cin and the frequency of the spikes. Additionally,

the input voltage at M1 gate, V 1
g controls the current I1D,

affecting the charging delay of the capacitor, thus influencing

the spikes’ frequency. The signal across the capacitor Vin is

then strengthened through an amplifier circuit that consists of

two analog inverters: the pull-down network uses an N-type

transistor for discharge, and the pull-up network employs a

single resistor for charging. While a single analog inverter can

achieve the required amplification, it adds a 180-degree phase

shift, necessitating the second inverter for phase correction. The

amplifier output is connected to two RC networks: the first one

consists of the pull-up resistor R3 with C1
Rst, and the second

is R4 and C2
Rst. These two RC networks are essential for the

oscillation functionality by adding a small phase shift due to

capacitance charging. The voltage across the final capacitor,

C2
Rst, controls transistor M2 which manages the discharging of

Cin. As V 2
g exceeds the threshold voltage of M2, the current

I2D flows through M2, initiating Cin discharge. However, as the

input voltage from the synapses continues to supply the charge

network, Cin gets recharged again, maintaining the circuit’s

spike oscillations.

The amplification of the signal’s amplitude at Vin is shown

in Fig. 3. However, the output signal, Vout, still remains

considerably below supply voltage V dd. So, a second amplifier

is added to boost the neuron’s output voltage to drive the

postsynaptic neuron, aiming for a maximum amplitude at V
′
out

(close to 1V V dd).

B. Modeling and training of P-SNN

By connecting multiple printed spiking neurons, the com-

putational paradigm of the SNN can be emulated, thereby

offering the potential to achieve the desired functionalities.

However, to fully leverage this potential, the component values

of the circuits (e.g., the crossbar conductances representing the

weights) should be designed and optimized for specific target

tasks. For this, it is necessary to establish a P-SNN optimization

model.

1) Modeling of P-SNN: An analytical model for the behavior

of the resistor crossbar for weighted-sum is given in [11] as

V 1
g =

N∑
n=1

V n
in

(
wn · {gn≥0}

)
+inv(V n

in)
(
wn · {gn<0}

)
, (2)

where gn denotes the crossbar conductance by its absolute value

and encodes with its sign, if the respective input is inverted

(to express negative weight). Furthermore, inv(·) refers to the

negative tanh function that describes the transfer characteristic

of the negation circuit. Finally, {·} is an indicator function that

returns 1 if the respective condition is true, else 0. Additionally,

wn refers to the weight given by

wn =
|gn|∑
m |gm| . (3)

To enable gradient-based training via backpropagation [19], a

fully differentiable model to describe the transfer characteristic

of the printed spike-generator circuit is needed. However, given

that the common hardware-agnostic SNN training frameworks

are based on (Leaky-) Integration-Fire mechanism [20, 21], they

are incompatible with proposed circuits, due to their device

and material constraints, and so can not describe their transfer

behavior. So, considering the circuit complexity, we utilize

a Transformer-based neural network as the surrogate spike-
generator (SG) model to learn the circuit behavior for mapping

the input voltages into the output voltages. A Transformer [22]



is a neural network model initially proposed for natural lan-

guage processing. It is, therefore, aptly suited for processing

sequential data. The essential part of the Transformer is the

attention mechanism, which enables the model to account for

positional and value correlations. The effectiveness of Trans-

former has been shown by numerous state-of-the-art models

like BERT [23] and GPT [24].
To prepare the data required for training the SG model, we

conducted 5,000 SPICE simulations for a single spike-generator

circuit in Fig. 3 based on the Printed Process Design Kit (P-

PDK) [25]. The duration of the input voltage (V 1
g ) is 3 s and the

temporal step size is 1ms. To ensure that the surrogate model

can comprehensively and accurately mimic the behavior of the

original spike-generator circuit in any operating scenario, we

designed the following patterns of input voltages (V 1
g ), namely,

1) constant voltages ranging from 0V to 2V, serving to

represent the case of stable inputs;

2) the output voltages obtained from 1), i.e., V ′
out, repre-

senting the case of a cascade of multiple neurons; and

3) diverse harmonic signals with varying frequencies

(0− 5Hz), amplitudes (0−1A), phases (0−2π), and their

combinations, expressing the circuit behavior in other

complex situations.

After obtaining the data from SPICE simulation, we split them

into three sets, a training set (70%) to guide the training of the

surrogate model, a validation set (20%) for stopping to avoid

overfitting, and a test set (10%) to evaluate the effectiveness

of the surrogate model. We use Adam [26] with its default

setup as the optimizer and the Mean Squared Error (MSE)

between the model output and the SPICE simulation as the

metric. After hyperparameter tuning, we choose a Transformer

with three causal attention layers as the final surrogate circuit

model. Causal attention thereby ensures that outputs are only

determined by the signals at previous time steps. Moreover,

each layer has three attention heads. The MSE is 1.1 × 10−6

on the validation set and 9.7×10−7 on the test set; therefore, we

conclude that the model is capable of sufficiently interpolating

and accurately predicting the output voltages.
Using the crossbar and the SG model, the transfer charac-

teristic of the printed spiking neuron can be expressed as

SG
( N∑

n=1

V n
in

(
wn · {gn≥0}

)
+ inv(V n

in)
(
wn · {gn<0}

) )
,

(4)

where V i
in ∈ R

T represents the i-th input voltage sequence.

Moreover, by connecting multiple spiking neurons, more com-

plex computing tasks can be implemented.
2) Training of P-SNN: In the training of existing P-ANNs

the cross-entropy loss L(·) is minimized w.r.t. the crossbar

conductances g for maximizing the classification accuracy.

However, given that the output of P-SNN is a temporal data

series, temporal dynamics of the circuit output need to be

considered. Therefore, to encourage the overall classification

accuracy at every time step, a modified training objective can

be formulated as

minimize
g

1

T

T∑
t=0

L (xt,y, g) , (5)

Fig. 4. Transient measurement results of the proposed printed spiking neuron.

where x ∈ R
B×T is input data series with batch size B,

y ∈ R
B denotes the corresponding classes, and g summarizes

all the learnable conductances in the P-SNN. Subsequently,

as all the operations in Eq. (5) are fully differentiable, the

gradient serves for the parameter update can be calculated by
1
T

∑T
t=0 ∇gL (xt,y, g). Consequently, gradient-based optimiz-

ers, such as Adam [26] and SGD [27], can be used for training.

IV. EVALUATION

To evaluate the proposed P-SNN, we first designed the

spike-generator circuit with synaptic inputs, implemented the

proposed training framework1 with PyTorch [28] and conducted

a comparative study of P-SNN against the prior P-ANNs [10]

and the benchmark SNNs [20].

A. Experiment Setup

1) Circuit Setup: The synapses and the spike-generator

circuit (Fig. 3) were designed based on the well-developed n-

EGT P-PDK [25]. We used Cadence Virtuoso2 tool to simulate

the output versus power relationship (Fig. 4) in SPICE.

2) Training Setup:
a) Datasets: We selected 13 benchmark datasets for the

experiments, whose complexities and use cases suit the target

application scenarios of PE. The datasets are split into train-

ing (60%), validation (20%), and test (20%) sets.

b) Training: We used the same topology #inputs-3-

#outputs for all P-SNNs. We employed full batches for gradi-

ent calculations and used Adam [26] with default parameters.

The initial learning rate was set to 0.1 and was halved once

there was no improvement on the validation set over 100
epochs. Training was stopped when the learning rate dropped

below 10−4. To guarantee a sufficiently good solution, the

aforementioned process was repeated 10 times (with random

seeds ranging from 1 to 10). This aims to mitigate the potential

impact of unfavorable initialization.

1Code available at https://github.com/Neuromophic/Printed Spiking NN.
2https://www.cadence.com/en US/home.html



Fig. 5. Accuracy Comparison of SNN, P-ANN and P-SNN.

c) Baselines: We employed another two approaches as

the baselines of P-SNNs to validate the major motivation of

this work, that is, power saving. P-ANNs [10] with the same

topologies as P-SNNs are trained on the corresponding datasets.

Additionally, considering the target computing paradigm of

this work, P-SNN is compared with its hardware-agnostic

counterpart by conducting training on SNNs with the leaky-

integration-fire mechanism [20].

3) Circuit Evaluation: The spike-generator circuit proposed

in this work (Fig. 3) includes six transistors, six resistors,

and four capacitors. The total area, power, and delay of the

circuit have been found to be 750mm2, 0.17mW and 29.31ms
respectively.

The power consumption by the circuit is estimated through

SPICE simulations. From Fig. 4, it is evident that, during

the event of any spike, the total power consumed by the

neuron is higher than that in no-spike condition. This indicates

an elevated level of neural activity within the circuit during

any spike events. Moreover, an increased power during spikes

indicates increased synaptic activity and signal transmission

in neurons, greater membrane polarization changes, and more

energy consumption.

B. Results

1) Accuracy and Power: After training the baseline SNNs,

P-ANNs, and the proposed P-SNNs, we selected the models

with the lowest loss on the validation set, as they are the

ones that would be printed. Note that, in accordance with the

objective proposed in Sec. III, we computed the classification

accuracy at every time step and subsequently averaged the

accuracies over time to yield the overall classification accuracy

of a dataset. These selected models were then evaluated on

the test set. Finally, for each dataset, we summarized the mean

accuracy w.r.t. random seeds and the corresponding power. The

result is presented in Fig. 5 and Fig. 6. To get insights into the

effectiveness of each model in various scenarios (datasets), we

also averaged the accuracy and standard deviation w.r.t. target

Fig. 6. Power Comparison of P-ANN vs P-SNN.

Fig. 7. Power Reduction from P-ANN to P-SNN.

tasks. The relative reduction in power for each of the datasets

is reported in Fig. 7.

2) Hardware Cost: To investigate the additional hardware

resources required by the spiking neuron circuit design, we

collected the device counts and total power saving of both

the previous P-ANNs and the proposed P-SNNs in different

application scenarios (i.e., datasets). Analogously, we averaged

the hardware costs across all datasets to provide a comparison

regarding the hardware costs between the P-ANN and its P-

SNN counterpart. The results can be seen in Tab. I.

C. Discussion

The comparative analysis among SNN, P-ANNs, and

P-SNNs (illustrated in Fig. 5) reveals that P-SNNs exhibits

a similar level of accuracy as SNN and P-ANNs. Across the

13 benchmark datasets, P-SNNs achieved an average accuracy

only 1% lower than the established reference P-ANNs net-

work. As for the pendigits dataset, all three neural networks



TABLE I
COMPARISON OF THE HARDWARE COSTS

Dataset
#Transistors #Resistors #Capacitors #Total Device

P-ANN P-SNN P-ANN P-SNN P-ANN P-SNN P-ANN P-SNN

Acute Inflammation 18 54 85 96 - 27 103 177

Balance Scale 14 42 79 77 - 21 93 140

Breast Cancer Wisconsin 24 72 118 129 - 36 142 237

Cardiotocography 48 144 268 264 - 72 316 480

Energy efficiency (y1) 22 66 127 121 - 33 149 220

Energy efficiency (y2) 22 66 131 121 - 33 153 220

Iris 14 42 83 77 - 21 97 140

Mammographic Mass 16 48 82 85 - 24 98 157

Pendigits 38 114 254 230 - 57 292 401

Seeds 20 60 107 110 - 30 127 200

Tic-Tac-Toe Endgame 24 72 116 129 - 36 140 237

Vertebral column (2 cl.) 18 54 81 96 - 27 99 177

Vertebral column (3 cl.) 18 54 100 99 - 27 118 180

Average 23 69 126 126 - 35 149 228

Device counts of Printed Artificial Neural Network (P-ANN) and proposed Printed

Spiking Neural Network (P-SNN) on 13 benchmark tasks

consistently yielded low-accurate results, indicating comparable

performance for the proposed P-SNNs.

In terms of power consumption, Fig. 6 shows the signif-

icant differences between P-SNN and P-ANNs, which is an

improvement by approximately 3.86× in power as depicted in

Fig. 7. As the power represents the utilized energy rate, the pro-

posed P-SNN demonstrates remarkable energy efficiency. This

reduction is a consequence of the inherent sparsity of voltage

activations within the network, aligning with the requirements

of printed electronics, particularly in low-power applications

where energy efficiency is a critical concern.

Conversely, the total number of devices, on average, in-

creased by 50% when employing P-SNNs compared to P-ANNs

due to a higher transistor count and the addition of capacitors,

as shown in Tab. I. Although the area footprint expanded,

P-SNNs achieved a significant reduction in power consumption

due to their spiking nature. Also, the datasets of various sizes

provide a wide range of spectrum to showcase the model’s

capability, tailored for PE applications.

V. CONCLUSION

This paper highlights the potential of merging printed man-

ufacturing techniques and innovative algorithms in the field of

PE and SNNs. In this work, we target the design of energy-

efficient printed spiking neuromorphic circuits. By establishing

a surrogate P-SNN model, the circuit can be explicitly incor-

porated into its design objective.

Despite the preliminary progress made in this work, other

methodologies for circuit optimization, like variation-aware,

noise-aware training, and learnable spike-generator, could be

explored in future research: In this study, the synaptic weights

are learnable. Nonetheless, in many design tasks, the cir-

cuits are constrained by predetermined energy budgets. Conse-

quently, future work may enable explicit constraints on energy

saving.
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