41 research outputs found
Evidence for the existence of a functional helical myocardial band
Characterization of local and global contractile activities in the myocardium is essential for a better understanding of cardiac form and function. The spatial distribution of regions that contribute the most to cardiac function plays an important role in defining the pumping parameters of the myocardium like ejection fraction and dynamic aspects such as twisting and untwisting. In general, myocardium shortening, tangent to the wall, and ventricular wall thickening are important parameters that characterize the regional contribution within the myocardium to the global function of the heart. We have calculated these parameters using myocardium displacement fields, which were captured through the displacement-encoding with stimulated echoes (DENSE) MRI technique in three volunteers. High spatial resolution of the acquired data revealed transmural changes of thickening and tangential shortening with high fidelity in beating hearts. By filtering myocardium regions that showed a tangential shortening index of <0.23, we were able to identify the complete or a portion of a macrostructure composed of connected regions in the form of a helical bundle within the left ventricle mass. In this study, we present a representative case that shows the complete morphology of a helical myocardial band as well as two other cases that present ascending and descending portions of the helical myocardial band. Our observation of a helical functional band based on dynamics is in agreement with diffusion tensor MRI observations and gross dissection studies in the arrested heart
Analytical method to measure three-dimensional strain patterns in the left ventricle from single slice displacement data
Background:
Displacement encoded Cardiovascular MR (CMR) can provide high spatial resolution measurements of three-dimensional (3D) Lagrangian displacement. Spatial gradients of the Lagrangian displacement field are used to measure regional myocardial strain. In general, adjacent parallel slices are needed in order to calculate the spatial gradient in the through-slice direction. This necessitates the acquisition of additional data and prolongs the scan time. The goal of this study is to define an analytic solution that supports the reconstruction of the out-of-plane components of the Lagrangian strain tensor in addition to the in-plane components from a single-slice displacement CMR dataset with high spatio-temporal resolution. The technique assumes incompressibility of the myocardium as a physical constraint.
Results:
The feasibility of the method is demonstrated in a healthy human subject and the results are compared to those of other studies. The proposed method was validated with simulated data and strain estimates from experimentally measured DENSE data, which were compared to the strain calculation from a conventional two-slice acquisition.
Conclusion:
This analytical method reduces the need to acquire data from adjacent slices when calculating regional Lagrangian strains and can effectively reduce the long scan time by a factor of two
The Embryonic Vertebrate Heart Tube Is a Dynamic Suction Pump
The embryonic vertebrate heart begins pumping blood long before the development of discernable chambers and valves. At these early stages, the heart tube has been described as a peristaltic pump. Recent advances in confocal laser scanning microscopy and four-dimensional visualization have warranted another look at early cardiac structure and function. We examined the movement of cells in the embryonic zebrafish heart tube and the flow of blood through the heart and obtained results that contradict peristalsis as a pumping mechanism in the embryonic heart. We propose a more likely explanation of early cardiac dynamics in which the pumping action results from suction due to elastic wave propagation in the heart tube
Velocity measurement in carotid artery: Quantitative comparison of time-resolved 3D phase-contrast MRI and image-based computational fluid dynamics
Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies.
Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique.
Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods.
Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD.
Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results
Update of the Scientific Opinion on opium alkaloids in poppy seeds
The CONTAM Panel wishes to thank the hearing experts: Pavel Cihlar, Daniel Doerge and Vaclav Lohr for the support provided to this scientific output. The CONTAM Panel acknowledges all European competent institutions and other stakeholders that provided occurrence data on opium alkaloids in food, and supported the data collection for the Comprehensive European Food Consumption Database. Adopted: 22 March 2018 Reproduction of the images listed below is prohibited and permission must be sought directly from the copyright holder:Figure A.1 in Appendix A: © Elsevier.Peer reviewedPublisher PD
Review of journal of cardiovascular magnetic resonance 2010
There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles [1]. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication
Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging