51 research outputs found

    Uncertainty about the impact of social decisions increases prosocial behaviour

    Get PDF
    Uncertainty about how our choices will affect others infuses social life. Past research suggests uncertainty has a negative effect on prosocialbehaviour by enabling people to adopt self-serving narratives about their actions. We show that uncertainty does not always promote selfishness. We introduce a distinction between two types of uncertainty that have opposite effects on prosocial behaviour. Previous work focused on outcome uncertainty (uncertainty about whether or not a decision will lead to a particular outcome). However, as soon as people’s decisions might have negative consequences for others, there is also impact uncertainty (uncertainty about how others’ well-being will be impacted by the negative outcome). Consistent with past research, we found decreased prosocial behaviour under outcome uncertainty. In contrast, prosocial behaviour was increased under impact uncertainty in incentivized economic decisions and hypothetical decisions about infectious disease threats. Perceptions of social norms paralleled the behavioural effects. The effect of impact uncertainty on prosocial behaviour did not depend on the individuation of others or the mere mention of harm, and was stronger when impact uncertainty was made more salient. Our findings offer insights into communicating uncertainty, especially in contexts where prosocial behaviour is paramount, such as responding to infectious disease threats

    Single-nucleotide polymorphism, linkage disequilibrium and geographic structure in the malaria parasite Plasmodium vivax: prospects for genome-wide association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ideal malaria parasite populations for initial mapping of genomic regions contributing to phenotypes such as drug resistance and virulence, through genome-wide association studies, are those with high genetic diversity, allowing for numerous informative markers, and rare meiotic recombination, allowing for strong linkage disequilibrium (LD) between markers and phenotype-determining loci. However, levels of genetic diversity and LD in field populations of the major human malaria parasite <it>P. vivax </it>remain little characterized.</p> <p>Results</p> <p>We examined single-nucleotide polymorphisms (SNPs) and LD patterns across a 100-kb chromosome segment of <it>P. vivax </it>in 238 field isolates from areas of low to moderate malaria endemicity in South America and Asia, where LD tends to be more extensive than in holoendemic populations, and in two monkey-adapted strains (Salvador-I, from El Salvador, and Belem, from Brazil). We found varying levels of SNP diversity and LD across populations, with the highest diversity and strongest LD in the area of lowest malaria transmission. We found several clusters of contiguous markers with rare meiotic recombination and characterized a relatively conserved haplotype structure among populations, suggesting the existence of recombination hotspots in the genome region analyzed. Both silent and nonsynonymous SNPs revealed substantial between-population differentiation, which accounted for ~40% of the overall genetic diversity observed. Although parasites clustered according to their continental origin, we found evidence for substructure within the Brazilian population of <it>P. vivax</it>. We also explored between-population differentiation patterns revealed by loci putatively affected by natural selection and found marked geographic variation in frequencies of nucleotide substitutions at the <it>pvmdr-1 </it>locus, putatively associated with drug resistance.</p> <p>Conclusion</p> <p>These findings support the feasibility of genome-wide association studies in carefully selected populations of <it>P. vivax</it>, using relatively low densities of markers, but underscore the risk of false positives caused by population structure at both local and regional levels.</p> <p>See commentary: <url>http://www.biomedcentral.com/1741-7007/8/90</url></p

    Sleep deprivation impairs and caffeine enhances my performance, but not always our performance: how acting in a group can change the effects of impairments and enhancements

    Get PDF
    What effects do factors that impair or enhance performance in individuals have when these individuals act in groups? We provide a framework, called the GIE ("Effects of Grouping on Impairments and Enhancements”) framework, for investigating this question. As prominent examples for individual-level impairments and enhancements, we discuss sleep deprivation and caffeine. Based on previous research, we derive hypotheses on how they influence performance in groups, specifically process gains and losses in motivation, individual capability, and coordination. We conclude that the effect an impairment or enhancement has on individual-level performance is not necessarily mirrored in group performance: grouping can help or hurt. We provide recommendations on how to estimate empirically the effects individual-level performance impairments and enhancements have in groups. By comparing sleep deprivation to stress and caffeine to pharmacological cognitive enhancement, we illustrate that we cannot readily generalize from group results on one impairment or enhancement to another, even if they have similar effects on individual-level performance

    Plasmodium vivax: paroxysm-associated lipids mediate leukocyte aggregation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paroxysms are recurrent febrile episodes, characteristic of <it>Plasmodium vivax </it>infections, which coincide with the rupture of schizont-infected erythrocytes in the patients' circulation. The present study describes the formation of prominent aggregates of leukocytes <it>in vitro </it>in the presence of parasite and host factors released during paroxysms.</p> <p>Methods</p> <p>Whole blood cells from uninfected malaria-naïve donors were incubated with plasma taken during a paroxysm or normal human plasma as a control and cell smears were observed under the microscope for the presence of leukocyte aggregates. Plasma factors involved in mediating the leukocyte aggregation were identified using immune depletion and reconstitution experiments. Furthermore, biochemical characterization was carried out to determine the chemical nature of the active moieties in plasma present during paroxysms.</p> <p>Results</p> <p>Leukocyte aggregates were seen exclusively when cells were incubated in plasma collected during a paroxysm. Immune depletion and reconstitution experiments revealed that the host cytokines TNF-alpha, GM-CSF, IL-6 and IL-10 and two lipid fractions of paroxysm plasma comprise the necessary and sufficient mediators of this phenomenon. The two lipid components of the paroxysm plasmas speculated to be of putative parasite origin, were a phospholipid-containing fraction and another containing cholesterol and triglycerides. The phospholipid fraction was dependent upon the presence of cytokines for its activity unlike the cholesterol/triglyceride-containing fraction which in the absence of added cytokines was much more active than the phospholipids fraction. The biological activity of the paroxysm plasmas from non-immune patients who presented with acute <it>P. vivax </it>infections was neutralized by immune sera raised against schizont extracts of either <it>P. vivax </it>or <it>Plasmodium falciparum</it>. However, immune sera against <it>P. vivax </it>were more effective than that against <it>P. falciparum </it>indicating that the parasite activity involved may be antigenically at least partially parasite species-specific.</p> <p>Conclusion</p> <p>Leukocyte aggregation was identified as associated with paroxysms in <it>P. vivax </it>infections. This phenomenon is mediated by plasma factors including host-derived cytokines and lipids of putative parasite origin. The characteristics of the phospholipid fraction in paroxysm plasma are congruent with those of the parasite-derived, TNF-inducing GPI moieties described by others. The more active cholesterol/triglyceride(s), however, represent a novel malarial toxin, which is a new class of biologically active lipid associated with the paroxysm of <it>P. vivax </it>malaria.</p

    Piezo1 integration of vascular architecture with physiological force

    Get PDF
    The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic¹⁻⁵. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca²⁺-permeable non-selective cationic channels for detection of noxious mechanical impact⁶⁻⁸. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    De novoCIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): A new member of the expanding family of pyrin-associated autoinflammatory diseases

    Get PDF
    Neonatal-onset multisystem inflammatory disease (NOMID; also known as chronic infantile neurologic, cutaneous, articular [CINCA] syndrome) is characterized by fever, chronic meningitis, uveitis, sensorineural hearing loss, urticarial skin rash, and a characteristic deforming arthropathy. We investigated whether patients with this disorder have mutations in CIAS1, the gene which causes Muckle-Wells syndrome and familial cold autoinflammatory syndrome, two dominantly inherited disorders with some similarities to NOMID/CINCA syndrome

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore