10 research outputs found

    Influence of an alkalizing supplement on markers of endurance performance using a double-blind placebo-controlled design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research has shown that ingestion of substances that enhance the body's hydrogen ion buffering capacity during high intensity exercise can improve exercise performance. The present study aimed to determine whether the chronic ingestion of an alkalizing supplement, which purports to enhance both intracellular and extracellular buffering capacity, could impact cardiorespiratory and performance markers in trained Nordic skiers.</p> <p>Methods</p> <p>Twenty-four skiers (12 men, 12 women), matched for upper body power (UBP), were split into treatment and placebo groups. The treatment group ingested Alka-Myte<sup>ÂŽ</sup>-based alkalizing tablets (1 tablet/22.7 kg body mass/day) over seven successive days while the placebo group consumed placebo tablets (i.e., no Alka-Myte<sup>ÂŽ</sup>) at the same dosage. Prior to tablet ingestion (i.e., pre-testing), both groups completed a constant power UBP test, three successive 10-sec UBP tests, and then a 60-sec UBP test. Next, skiers completed the 7-day ingestion of their assigned tablets followed immediately by a repeat of the same UBP tests (i.e., post-testing). Neither the skiers nor the researchers were aware of which tablets were being consumed by either group until after all testing was complete. Dependent measures for analysis included heart rate (HR), oxygen consumption (VO<sub>2</sub>), minute ventilation (V<sub>E</sub>), blood lactate (LA), as well as 10-sec (W10, W) and 60-sec (W60, W) UBP. All data were evaluated using a two-factor multivariate repeated measures ANOVA with planned contrasts for post-hoc testing (alpha = 0.05).</p> <p>Results</p> <p>Post-testing cardiorespiratory (HR, VO<sub>2</sub>, V<sub>E</sub>) and LA measures for the treatment group tended to be significantly lower when measured for both constant power and UBP60 tests, while measures of both 10-sec (W10: 229 to 243 W) and 60-sec UBP (W60: 190 to 198 W) were significantly higher (<it>P </it>< 0.05). In contrast, there were no significant changes for the placebo group (P > 0.05).</p> <p>Conclusions</p> <p>Following the 7-day loading phase of Alka-Myte<sup>ÂŽ</sup>-based alkalizing tablets, trained Nordic skiers experienced significantly lower cardiorespiratory stress, lower blood lactate responses, and higher UBP measures. Thus, the use of this supplement appeared to impart an ergogenic benefit to the skiers that may be similar to the effects expected from consuming well-studied extracellular buffering agents such as sodium bicarbonate.</p

    Influence of training status and exercise modality on pulmonary O2 uptake kinetics in pre-pubertal girls

    Get PDF
    The limited available evidence suggests that endurance training does not influence the pulmonary oxygen uptake (V(O)(2)) kinetics of pre-pubertal children. We hypothesised that, in young trained swimmers, training status-related adaptations in the V(O)(2) and heart rate (HR) kinetics would be more evident during upper body (arm cranking) than during leg cycling exercise. Eight swim-trained (T; 11.4 +/- 0.7 years) and eight untrained (UT; 11.5 +/- 0.6 years) girls completed repeated bouts of constant work rate cycling and upper body exercise at 40% of the difference between the gas exchange threshold and peak V(O)(2). The phase II V(O)(2) time constant was significantly shorter in the trained girls during upper body exercise (T: 25 +/- 3 vs. UT: 37 +/- 6 s; P &#60; 0.01), but no training status effect was evident in the cycle response (T: 25 +/- 5 vs. UT: 25 +/- 7 s). The V(O)(2) slow component amplitude was not affected by training status or exercise modality. The time constant of the HR response was significantly faster in trained girls during both cycle (T: 31 +/- 11 vs. UT: 47 +/- 9 s; P &#60; 0.01) and upper body (T: 33 +/- 8 vs. UT: 43 +/- 4 s; P &#60; 0.01) exercise. The time constants of the phase II V(O)(2)and HR response were not correlated regardless of training status or exercise modality. This study demonstrates for the first time that swim-training status influences upper body V(O)(2) kinetics in pre-pubertal children, but that cycle ergometry responses are insensitive to such differences

    Anaerobic performance in masters athletes

    Full text link

    Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group

    Get PDF
    Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological age (18–75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group. The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and 1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted “brain age” and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen’s d = 0.14, 95% CI: 0.08–0.20) compared with controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical value of these brain-PAD estimates

    Die erblich-konstitutionellen morphologischen Anomalien der Leukocyten

    No full text

    The neuroimmunology of degeneration and regeneration in the peripheral nervous system

    No full text
    corecore